
More Fun with Timer Interrupts

Chords
Objective: Play a musical chord each time you press a button:

Button RC0 RC1 RC2
Timer Timer0 Timer1 Timer3
RB0 A3 C4 E4
RB1 B3 D4 F4
RB2 C4 E4 G4

Calculations: Assume Timer 0 / 1 / 3 with a pre-scalar of 1

A3 B3 C4 D4 E4 F4 G4 A4
Hz 220 246.94 261.63 293.66 329.63 349.23 392 440
N 22,727.27 20,247.83 19,110.96 17,026.49 15,168.52 14,317.21 12,755.1 11,363.64

Hardware: Connect RC0 / RC1 / RC2 to an 8 Ohm speaker. Limit the current from each pin on the PIC
to 20mA (250 Ohms @ 5V).

RC0

RC1

RC2
250

250

250
8

avg()

Software: Global Variables:

// Global Variables

const unsigned char MSG0[21] = "Chord.C ";
const unsigned char MSG1[21] = "Timer 0/1/2/3 ";

const unsigned int A3 = 22727;
const unsigned int B3 = 20247;
const unsigned int C4 = 19110;
const unsigned int D4 = 17026;
const unsigned int E4 = 15168;
const unsigned int F4 = 14317;
const unsigned int G4 = 12755;
const unsigned int A4 = 11363;

unsigned int N0, N1, N3;

NDSU More Fun with Timer Interrupts October 25, 2016

JSG - 1 -

Interrupt Service Routine:

// Interrupt Service Routine
void interrupt IntServe(void)
{
 if (TMR0IF) {
 TMR0 = -N0;
 if (PORTB) RC0 = !RC0;
 TMR0IF = 0;
 }
 if (TMR1IF) {
 TMR1 = -N1;
 if (PORTB) RC1 = !RC1;
 TMR1IF = 0;
 }
 if (TMR2IF) {
 if (RB0) { N0 = A3; N1 = C4; N3 = E4; }
 if (RB1) { N0 = B3; N1 = D4; N3 = F4; }
 if (RB2) { N0 = C4; N1 = E4; N3 = G4; }
 if (RB3) { N0 = D4; N1 = F4; N3 = A4; }
 TMR2IF = 0;
 }
 if (TMR3IF) {
 TMR3 = -N3;
 if (PORTB) RC2 = !RC2;
 TMR3IF = 0;
 }
 }

Interrupt Initialization:
// set up Timer0 for PS = 1
 T0CS = 0;
 T0CON = 0x88;
 TMR0ON = 1;
 TMR0IE = 1;
 TMR0IP = 1;
 PEIE = 1;
// set up Timer1 for PS = 1
 TMR1CS = 0;
 T1CON = 0x81;
 TMR1ON = 1;
 TMR1IE = 1;
 TMR1IP = 1;
 PEIE = 1;
// set up Timer2 for 1ms
 T2CON = 0x4D;
 PR2 = 249;
 TMR2ON = 1;
 TMR2IE = 1;
 TMR2IP = 1;
 PEIE = 1;
// set up Timer3 for PS = 1
 TMR3CS = 0;
 T3CON = 0x81;
 TMR3ON = 1;
 TMR3IE = 1;
 TMR3IP = 1;
 PEIE = 1;
// turn on all interrupts
 GIE = 1;

NDSU More Fun with Timer Interrupts October 25, 2016

JSG - 2 -

Main Loop: Interrupts do all the work - just display the timing for each interrupt (N)

 while(1) {
 LCD_Move(0,0); LCD_Out(N0, 4);
 LCD_Move(0,8); LCD_Out(N1, 4);
 LCD_Move(1,0); LCD_Out(N3, 4);
 }

Display resulting from pressing button RB2: the period of the three notes played are 19,110 / 15,168 / 12,750 clocks
The resistors are connected to RC0 / RC1 and RC2

NDSU More Fun with Timer Interrupts October 25, 2016

JSG - 3 -

Quad Copter Motor Controller (Quad.C)
Objective: Control the speed of a BLDC motor (quad-copter motor) using the push buttons:

Hardware:
Blue Wires from the controller: phase A / B / C to the BLDC motor
Power (black / red wires):

Red = +6 to +12V DC, capable of 1A
Black = ground

Signal: (3-wire black / red / white)
Black: ground
Red: +5V
White: Signal: 0.9ms to 2.0ms pulse @ 50Hz

Software: The controller for the quad copter motor uses format which is fairly standard with R/C
controllers:

The white signal wire is TTL logic levels (0 / 5V)
The frequency of the pulse should be 50Hz
The pulse width determines the motor speed

0.9ms Idle
1.2ms Slow
2.0ms Fast

To generate this signal, use two interrupts:

Timer0 Interrupt
Called every 20ms (50Hz).
RC0 is set every interrupt
In Timer0, the next Timer1 interrupt is set up for 0.9 to 2.0ms later

Timer1
Clear RC0

NDSU More Fun with Timer Interrupts October 25, 2016

JSG - 4 -

20ms (50Hz)

RC0

Timer0 Timer1 Timer0 Timer1

0.9 to 2.0ms

Software:

Timer0 Interrupt: 20ms is 200,000 clocks. To trigger a Timer0 interrupt every 200,000 clocks, let
PS = 4
Y = 50,000

Timer1 Interrupt: 0.9 to 2.0ms is 9,000 to 20,000 clocks. Let PS = 1.

Code: (Quad.C)

Interrupt Service Routine:

void interrupt IntServe(void)
{
 if (TMR0IF) { // PS = 4
 TMR0 = -50000;
 TMR1 = -N;
 T0 += 1;
 RC0 = 1;
 TMR0IF = 0;
 }
 if (TMR1IF) {
 RC0 = 0;
 T1 += 1;
 TMR1IF = 0;
 }
 }

Interrupt Set-Up:
// set up Timer0 for PS = 4
 T0CS = 0;
 T0CON = 0x81;
 TMR0ON = 1;
 TMR0IE = 1;
 TMR0IP = 1;
 PEIE = 1;
// set up Timer1 for PS = 1
 TMR1CS = 0;
 T1CON = 0x81;
 TMR1ON = 1;
 TMR1IE = 1;
 TMR1IP = 1;
 PEIE = 1;
// turn on all interrupts
 GIE = 1;

Main Loop:

NDSU More Fun with Timer Interrupts October 25, 2016

JSG - 5 -

 while(1) {
 if (RB0) N = 9000;
 if (RB1) N = 12000;
 if (RB2) N = 13000;
 if (RB3) N = 14000;
 if (RB4) N = 15000;
 if (RB5) N = 16000;
 if (RB6) N = 17000;
 if (RB7) N = 18000;

 LCD_Move(1,9); LCD_Out(N, 4);

 }
 }

Resulting display when pressing RB1: 1.2ms period pulse.
A 50Hz pulse is output on RC0 which is sent to the white -wire of the quad copter controller.

NDSU More Fun with Timer Interrupts October 25, 2016

JSG - 6 -

DC Servo Motor: Frequency Counter (Freq.C)
Objective:

Measure how fast a DC Servo Motor is spinning
Measure the frequency of a 0V / 5V square wave in cycles / second

The sensor for this motor is an optical encoder with the following pin-outs:
Ground
Index
Ch A
+5V
Ch B

As you rotate the motor, the optical encoder outputs 200 pulses per rotation. By counting the number of
pulses per second, you know the motor's speed. To do this, use two interrupts:

Timer0: Interrupt every 1 second (10,000,000 clocks)
PS = 256
N = 39,062

Timer1:
Set the input to Timer1 to RC0 (instead of the clock)
Set the pre-scalar to 1

Timer1 then counts each pulse from the optical encoder. (Note: The encoder isn't able to drive the LEDs
on your PIC board - which draw about 2mA. For the encoder to work, you need to remove the LED
jumper on PORTC).

NDSU More Fun with Timer Interrupts October 25, 2016

JSG - 7 -

Software:

Interrupt Service Routine:

// Global Variables
unsigned int T0, T1, T2;

// Interrupt Service Routine
void interrupt IntServe(void)
{
 if (TMR0IF) {
 TMR0 = -39250;
 T0 += 1;
 T2 = T1;
 T1 = TMR1;
 TMR0IF = 0;
 }
 if (TMR1IF) {
 T1 += 1;
 TMR1IF = 0;
 }
 if (TMR2IF) {
 RC1 = !RC1;
 TMR2IF = 0;
 }
 }

Interrupt Initialization
// set up Timer0 for PS = 256, input = clock
 T0CS = 0;
 T0CON = 0x87;
 TMR0ON = 1;
 TMR0IE = 1;
 TMR0IP = 1;
 PEIE = 1;
// set up Timer1 for PS = 1, input = RC0
 T1CON = 0x81;
 TMR1ON = 1;
 TMR1IE = 0;
 TMR1IP = 0;
 PEIE = 0;
 TMR1CS = 1;
 TRISC0 = 1;
// set up Timer2 for 0.5ms (1kHz reference signal on RC0)
 T2CON = 0x4D;
 PR2 = 124;
 TMR2ON = 1;
 TMR2IE = 1;
 TMR2IP = 1;
 PEIE = 1;
// turn on all interrupts
 GIE = 1;

Main Loop:
 while(1) {
 Hz = T1 - T2;
 LCD_Move(0,8); LCD_Out(TMR1, 0);
 LCD_Move(1,8); LCD_Out(Hz, 0);
 }

NDSU More Fun with Timer Interrupts October 25, 2016

JSG - 8 -

Display when measuring a 1kHz square wave (output on RC1).
The running time of Timer1 is displayed on the top row, the cycles per second (Hz) is displayed on the second row.

NDSU More Fun with Timer Interrupts October 25, 2016

JSG - 9 -

DC Motor / Fan Tachometer (Tach.C)

Problem: Measure the speed of the 12V motor

I/O Pins:
Black: Gound
Red: Power (0V to +12V DC, capable of 10mA)
Blue: Tachometer output (add a 1k pull-up resistor to +5V to read this signal)

Software:

Interrupt Service Routine:

unsigned long int TIME;
unsigned long int T2, T1;
unsigned long int PERIOD;

// Subroutine Declarations
#include <pic18.h>

#include "lcd_portd.h"

// Subroutines
#include "lcd_portd.c"

// Interrupt Service Routinevoid interrupt IntServe(void)
{
 if (TMR0IF) {
 TIME = TIME + 0x10000;
 TMR0IF = 0;
 }
 if (TMR1IF) {
 TMR1 = -1;
 T2 = T1;
 T1 = TIME + TMR0;

NDSU More Fun with Timer Interrupts October 25, 2016

JSG - 10 -

 PERIOD = T1 - T2;
 TMR1IF = 0;
 }
 if (TMR2IF) {
 RC1 = !RC1;
 TMR2IF = 0;
 }
 }

Interrupt Initialization:

// set up Timer0 for PS = 1
 T0CS = 0;
 T0CON = 0x88;
 TMR0ON = 1;
 TMR0IE = 1;
 TMR0IP = 1;
 PEIE = 1;
// set up Timer1 for PS = 1, input = RC0
 T1CON = 0x81;
 TMR1ON = 1;
 TMR1IE = 1;
 TMR1IP = 1;
 PEIE = 1;
 TMR1CS = 1;
 TRISC0 = 1;
// set up Timer2 for 0.5ms
 T2CON = 0x4D;
 PR2 = 124;
 TMR2ON = 1;
 TMR2IE = 1;
 TMR2IP = 1;
 PEIE = 1;

// turn on all interrupts
 GIE = 1;

Main Loop:

 while(1) {

 LCD_Move(0,5); LCD_Out(TIME + TMR0, 7);
 LCD_Move(1,5); LCD_Out(PERIOD, 7);

 }

NDSU More Fun with Timer Interrupts October 25, 2016

JSG - 11 -

Display of Tach.C when reading a 1kHz square wave output on RC0.
Row #1 displays the running time since reset in seconds.

Row #2 displays the period of the waveform seen on RC0.

NDSU More Fun with Timer Interrupts October 25, 2016

JSG - 12 -

Pulse Width Modulation (PWM.C)
Objective: Turn on and off a motor / light / heater from 0% on to 100% on

With 10,000 levels of grey, and
At 1kHz

Solution: Use Timer interrupts:

Timer0 sets RC0
Timer0 interrupts every 1ms for 1kHz
When called, it sets up a Timer1 interrupt from 100 to 9900 clocks in the future

When Timer0 kicks in
Timer1 clears RC0

Timer0

Set every 1ms

Timer1

Clear 0.01 to 0.99ms later

Timer0 Timer1

0.01 to 0.99ms0.01 to 0.99ms

RC0

Software:

Interrupt Service Routine: Pulse Width is passed in PWM
0 = 0%
10000 = 100%
void interrupt IntServe(void)
{
 if (TMR0IF) {
 TMR0 = -10000;
 TMR1 = -PWM;
 TIME += 1;
 RC0 = 1;
 TMR0IF = 0;
 }
 if (TMR1IF) {
 RC0 = 0;
 TMR1IF = 0;
 }

 }

Interrupt Initialization:

NDSU More Fun with Timer Interrupts October 25, 2016

JSG - 13 -

// set up Timer0 for PS = 1
 T0CS = 0;
 T0CON = 0x88;
 TMR0ON = 1;
 TMR0IE = 1;
 TMR0IP = 1;
 PEIE = 1;
// set up Timer1 for PS = 1
 T1CON = 0x81;
 TMR1ON = 1;
 TMR1IE = 1;
 TMR1IP = 1;
 PEIE = 1;
 TMR1CS = 0;
// turn on all interrupts
 GIE = 1;

Main Loop:

 while(1) {
 if (RB0) PWM = 100;
 if (RB1) PWM = 1000;
 if (RB2) PWM = 2000;
 if (RB3) PWM = 3000;
 if (RB4) PWM = 4000;
 if (RB5) PWM = 5000;
 if (RB6) PWM = 6000;
 if (RB7) PWM = 9900;

 LCD_Move(0,7); LCD_Out(TIME, 3);
 LCD_Move(1,7); LCD_Out(PWM, 2);

 }

NDSU More Fun with Timer Interrupts October 25, 2016

JSG - 14 -

