N DSU Desings using a Microcontroller ECE 401

Designs using a Microcontroller

+V PIC18F2620
300
rez—\/\/\
(}
(}
300
RBO
10k 300

Microcontroller -

In Senior Design I, many of the projects can be built just using digital logic and 555 timers. They could
also be built using a microcontroller.

Microcontrollers are just a tool: if the tool helps you do your job, use it. If not, don't use it. If you don't
use a microcontroller, you don't need to worry about

Designing hardware around the microcontroller,

Having to write and debug code, and

How to download that code.

If you are willing to learn how to do this, however, microcontrollers can give you a great deal of
flexibility in your design.

In this lecture, we going to cover
Hardware: How to wire up a PIC chip so that you can make a light blink
Downloading: How to get your code onto the PIC chip, and

+ Coding: How to write simple C routines to make a light blink

I like to say that only engineers get excited when a light blinks. Getting a light to blink is a big deal. A
blinking light means

You were able to compile your code
You were able to download your code, and

Your code is running.

Once you get a light to blink, the rest is easy (sort of)...

JSG -1 - January 4, 2024

N DSU Desings using a Microcontroller ECE 401

Hardware

There are tons of microcontrollers out there. In Senior Design I, only the PIC18F2620 is allowed for
several reasons:

+ You can find pre-written code online for just about everything for an Arduino and Raspberry Pi. A
degree in ECE should mean more than you know how to search the web.

« We have a boot-loader for this chip (same as used in ECE 376)
+ We have experience using this chip (same as ECE 376)
+ We have a C compiler for this chip (same as ECE 376)

The only difference between the 40-pin version used in ECE 376 and the 28-pin version used in ECE 401
is

» You have 22 I/O pins with the 28-pin version (vs. 33 I/O pins), and
» PORTD and PORTE are not connected to any I/O pins with the 28-pin version

Otherwise, they're the same.

If you look up the data sheets for a PIC18F2620, the I/O pins can be found.

28-Pin SPDIP, SOIC

MCLR/VPPIRE3 —= []°1 ~J 28[] =—= RB7/KBI3/PGD
RAOAND =[] 2 27[] = RB6/KBI2/PGC
RA1ANT =—=[] 3 26] =—= RBS/KBI1/PGM
RA2/AN2/VREF-ICVREF =—= | 4 25[] =—= RB4/KBIOD/AN11
RA3AN3INVREF+ =[] & n o 24|] = RB3/AN9/CCP2(1)
RA4TOCKICIOUT =—] & ® o 23] =—= RB2/INT2/ANS
RAS5/AN4/SS/HLVDIN/C20UT =[] 7 gl 22[] =—= RB1/INT1/AN10
vss —=[] 8 v 21[] =—= RBO/INTO/FLTO/AN12
OSC1/CLKIRA7 =—=[] 9 Qo 20[] =— VoD
OSC2/CLKOMRAG = [|10 oo 19] =— Vss
RCO/T10SO/T13CKI =—= [11 18[] =—= RCT/RX/DT
RC1/T10SIHCCP2) =[] 12 17[] =— RCBI/TXICK
RC2/CCP1 == []13 16|_|] =—= RC5/SDO
RC3/SCK/SCL =[] 14 15[] =—= RC4/SDISDA

Pinouts for a PIC18F2620

When you design a system around a PIC processor, you need to identify the function of each I/O pin.
With this processor, there are three I/O ports: A, B, and C. If a single LED is connected to PortC pin 3,
the pin assignments could be something like this:

PORTC
7 6 5 4 3 2 1 0
TX RX - - LED - - -
Out In Output

JSG -2 - January 4, 2024

N DSU Desings using a Microcontroller ECE 401

A schematic for this minimal setup:

oy +5V +5V
N
Al W T
10|__ 5V
Varezre A\ /\/\ T
10k FTDI
1 RCe/TXZ 4 Rx
GND
MCLR
Reset C — JE
+5V % O —
I j RCeMX— 2l o | rx
18 3
Button# — RC7/RX—"\\\—1O | TX
21| oo FroI | O 5
@y o
0SCT @%\‘
20MHz 1k
- 14
10k = RCO
10
0sC2 LED i

Vss
8, 19J; -

Schematics for getting a PIC to run and drive an LED on PORTC pin 3.
The FTDI can be connected using the 18 pins around the edge as shown in the photo below
It can also be connected using the six connections at the edge of the board (shown in blue above)

Photo of breadboard for the above schematic

JSG -3 - January 4, 2024

N DSU Desings using a Microcontroller ECE 401

Compiling C Code & Using MPLABS8

Step 1: Start with a working program. Typically, open a zip file and copy all of its contents to your
z-drive. I'd recomment something like

z\ECE401\Clock
Step 2: Start MPLAB. Go to the program wizard (just like you did in assembler)

% MPLAB IDE v8.10

File Edit Wiew | Project Debugger Programmer Tools

Project Wizard. ..

Tew

[Untitled WIS
Close 3
| Sek Active Project »

Select your device: PIC18F2620 (or 4620)

Select the Hi-Tech C Universal Toolsuite.

| Project Wizard x|
Step Two: Eﬁ
Select a language toolsuite /{é}

Active Toolzuite: IHI-TEEH Univerzal ToolSuite j

r— Taolsuite Contents
HI-TECH &NS| C

Browse... |

Help! My Suits lsn't Listed! [~ Show all installed toolsuites

This tells the compiler to interprit your code as C code. Note that if this isn't an option under the Active
Toolsuite, there's a problem. This usually means the C compiler is in a read-only directory and needs the
permissions changed by a system administrator.

Assuming that works...

Change the path to your z-drive for where the files are located

[

Bl Project Wizard x|

Step Three: E
Create a new project, of reconfigure the active project? /{I’O}

% Create Mew Project File

Iz: WECEIFEMClock\Clock.mop Browse... |

Select the C program you want to compile (usually the name of the directory)

JSG -4 - January 4, 2024

N DSU Desings using a Microcontroller ECE 401

Step Four: EE
Add existing files bo pour project /‘{'@}

_| A C:AECE37E_18F4E20\Clack \Clacl
Add >y -
e
Remave |

You should get the following screen. If not, select View Project

W Clock - MPLAB IDE v8.10

File Edit | Yiew Project Debugger Programi

W Project
0 = !
Oukput

Toolbars »

o [FAL i Bemickars

You should get the following screen:

% Clock - MPLAB IDE ¥8.10

File Edit Wiew Project Debugger Programmer Tools Configure Window Help

Dﬁﬂ|é§.i|§ﬁlﬁ? JIDehug vl@?"@@ﬁ)0|!! JChecksum:l]xlBSa
R

Ml C:\ECE376_18F4620% Clock' Clock.C
= (3 dock.mep 1 // -—— ECE 376 - Binary Clock ———————————————-

ED Source Files il i MName :
Clock.C 3 // Date:
[0 Header Files 4 Iy Descripti)
(230 Object Files phiom:
D Libraty Files - i
L[other Files ? ff oo m oo
g // Global Variables
9
1n /7 Bubroutine Declarations
11 #include <picl8.h>
12

* important * Offset your code by 0x800
Your code needs to start at 0x800 - after the boot-loader.

Go to Project - Build Options - Project

JSG -5 - January 4, 2024

NDSU

Desings using a Microcontroller

ECE 401

% Clock - MPLAB IDE 8.10

File Edit “iew | Project Debugger Programmer Tools Configure Window E

| D= |

I Clock.mcw

= [Clock
E|D So

Project Wizard. ..

Mew. .,

OpEn...

Clase

Sek Active Project

Quickbuild (no ., asm file)

Clean

Euild

Rebuild

HI-TECH C Manual
Build ConFiguration
EBuild Options. ..

Fi0
Ctrl+F10
Fi1

Under Linker, offset the code by 0x800

L e R L]

Build Options For Project "Clock.mcp™ |

21

Directuriesl Custom Buildl Trace I Driver I Compiler ~ Linker |I3Inba||

 Runtime options

[v Clear bss
[" Initialize stack
I™ | Inttialize heap

[V Initislize data
[~ Keep generated
I~ Use GSCEAL

startup.as

~ Linker options

o
Codeoffset W
Checksum I—

Enata '—

code by 0x800

note: If your code worked yesterday and doesn't work today, it's probably you forgot to offset your

Compile y our code just like you did
Project Build All (or F10)

in assembler

You should get the following message

Memory Summary:

Program space used 76h (
Data space used 3h (
EEPROM space used Oh (
ID Location space used Oh (
Configuration bits used Oh (

8) of 10000h bytes
3) of F80h bytes
0) of 400h bytes
0) of 8h nibbles
0) of 7h words

O OO oo

[N eNeN N

o o o o° o
—_— — — — —

This tells you your code compiled and uses up 118 bytes (out of 64k), 3 bytes of RAM (out of 4k), etc.

This also creates some files

JSG

January 4, 2024

N DSU Desings using a Microcontroller ECE 401
Clock.Ist
This shows how your C code converts to assembler. A section looks like the following

; || E:"-.,EEE376_13F452"m,lZIock"-.,ock.lst ;Iglg

H1e1 153 O00FFAC SI1FF mov (77 _maintz2+0) «0ffh, w
‘I 162 154 line 29
163 155 jClock.C: Z9: PORTA = 0;
154 156 O0O0FFAE O0QEOO movlw low(0)
165 157 O0O0FFEOD BESD movwi (386810, < jwvolatile
166 158 line 30
167 159 ;jClock.: 30: PORTE = 0O;
168 160 O0O0FFEZ O0OEOD mov 1w low(0)
169 161 O0O0FFBE4 BES1 movwi (396910, < jwvolatile
170 162 line 31
L7 163 iClock.C: 31: BORTC = 0;
1zz 1la4 O0O0FFE& O0EODD mov 1w low(0)
173 165 O0OO0OFFES 6E8Z2 movwf (387000, < jwvolatile
174 la6 line 32
175 1a7 ;Clock.C: 3Z: PORTD = 0O;
4176 168 O0O0FFBA O0QEODD mov 1w low(0)
177 16% (QOFFEC &ES3 movwi ({39710, 2 jvolatile
j17e 170 line 33
Clock.hex

This is the machine code you download to your processor

:04000000C7EF7FFOD7
:10FFS8EOOOOOES26EO000E936E000ES46E000E956E25
:10FF9EOO00OE966EOOOLIFF6FOFOECI6EOOO0LIFEFS5135
:10FFAEOOOOOE806EOOOES816EOOOE826E000E836E4D
:10FFBEOOOOOE846E000EO0010001FD6FO00EOOO0LAS
:10FFCEOOFE6F010EOO0010001FD2500010001FD6F15
:10FFDEOOOOOEOOO10001FE210001FE6FFDCO83FF37
:10FFEE00836601D001D002D08228826EEAD700EF5C
:02FFFEOOOOF011

:00000001FF

Note that the reason we like C so much is
+ It compiles to assembler fairly directly
« Meaning it is efficient, and

« C has things like multiply, divide, loops, arrays.

JSG -7 -

January 4, 2024

N DSU Desings using a Microcontroller ECE 401
C-Coding

Once you have the hardware and MPLABS compiler ready, you can start coding. Each pin can be input
or output

« Input: Read the buttons or other devices.
o 5V =logicl
o 0OV =logic0

+ Output: Drive something like an LED

© Logicl =5V
© Logic 0 =0V

The program has to tell the PIC which it is. These are the TRIS registers where each bit determines the
I/O status of each pin. For example

TRISA = 0x00;

tells the PIC that all pins on PORTA are output (a zero is written to each bit of TRISA)
TRISB = O0xFF;

tells the PIC that all pins of PORTB are input (a one is written to each bit of TRISB)
TRISC = 0xO0F;

tells the PIC that the first four pins of PORTC are output (0) and the last four pins are input (1).

The I/O ports can be addressed using their name

PORTA = 0x00; all pins on PORTA are 0V
PORTB = O0OxFF; all pins on PORTB are 5V
PORTC = 0x01; pin #0 is 5V, the rest are 0V

You can also address each bit of a given port

RAO = 1; Port A bit #0 is 5V, other pins are unchanged
RB3 = 0; Port B bit #3 is 0V
RC7 = 1; Port C bit #7 is 5V

Also also, you need to include the code
ADCON1 = 0xO0F;

to use binary inputs and outputs. For more details on this, please refer to ECE 376 on analog inputs and
outputs.

JSG -8 - January 4, 2024

NDSU

Desings using a Microcontroller

ECE 401

Program #1: Write 1,2,3to Port A, B, C

C-Code

// Subroutine Declarations

#include <picl8.h>
// Subroutines
// Main Routine

void main (void)

{

TRISA = 0;
TRISB
TRISC = 0;
ADCON1 =

Il
o
~.

PORTA = 1;
PORTB
PORTC = 3;

Il
N
~.

while (1) ;

Compilation Results:

Memory Summary:
Program space
Data space
EEPROM space
ID Location space
Configuration bits

used
used
used
used
used

2Eh
1h
Oh
Oh
Oh

PRy

[oNeNeN e

of 10000h
of F80h
of 400h
of 8h
of 7h

bytes
bytes
bytes
nibbles
words

This C code compiles into 23 lines of assembler (46 bytes: each instruction is two bytes)

cloNoNoNe)
OO O o

o o o o o

Note: The while(1); statement at the end is a stop command. If you remove it, the program will execute
until it gets to the end of memory (32k instructions later) then it restarts at address 0x0000, which is

where the boot-loader is located.

JSG

January 4, 2024

N DSU Desings using a Microcontroller

ECE 401

Program #2: Make RCO blink at 220Hz

#include <picl8.h>

void main (void)
{

unsigned int i;

TRISA = 0;
TRISB = 0;
TRISC = 0;
ADCON1 = 0xO0F;
PORTC = 0;

while (1) {
RCO = !RCO;
for (1i=0; 1<1419; i++);
}

}

The compilation results are:

Memory Summary:
Program space used 6Ch
Data space used 3h
EEPROM space used Oh
ID Location space used Oh
Configuration bits used Oh

O O O Ww

of 10000h
of F80h
of 400h
of 8h
of 7h

bytes
bytes
bytes
nibbles
words

OO O oo

OO O LN

o° o o° o o
_—— — — —

The number /419 is found using trial and error. It sets up a wait routine to set the frequency to 220Hz

Actual frequency output on RCO is 220.1Hz

JSG - 10 -

January 4, 2024

NDSU

Desings using a Microcontroller

ECE 401

Program #3: Subroutines and Wait loops

Another nice feature of C is you have access to subroutines. Suppose you want to write a routine which
counts once per second. One way to do this is create a suboutine, Wait(), which waits N milliseconds.
The number 617 is found using trial and error: whatever it takes so that Wait(1000) waits 1000ms.

// Subroutine Declarations
#include <picl8.h>

// Subroutines
void Wait (unsigned int X)
{
unsigned int i, 3j;
for (i=0; i<X; i++)
for (j=0; 3j<617; j++);
}

// Main Routine

void main (void)

{

TRISA = 0;
TRISB = 0;
TRISC = 0;
ADCON1 = 0x0F;
PORTC = 0;
while (1) {

PORTC += 1;
Wait (1000);
}

Counting once per second. Current countis 13 (1101)

JSG

11 -

January 4, 2024

NDSU

Desings using a Microcontroller

ECE 401

Program #4: Counter

// Subroutine Declarations
#include <picl8.h>

// Subroutines
void Wait (unsigned int X)
{
unsigned int i, 7J;
for (i=0; i<X; i++)
for (j=0; J<617; Jj++);
}

void Beep (void)
{
unsigned int 1, 3J;
for (i=0; 1i<50; i++) {
RAl = !RAl;
for (j=0; 3j<200; J++);
}

// Main Routine

void main (void)
{
unsigned int COUNT;

TRISA = 0;
TRISB = OxFF;
TRISC = 0;
ADCON1 = 0xO0F;
COUNT = 0;
while (1) {

while (RB7) ;
while (!RB7);

Beep();

COUNT += 1;
PORTC = COUNT;

if (COUNT >= 10) {

RAO = 1;

Wait (1000);
RAO = 0;

COUNT = 0;
PORTC = COUNT;

Beep every time button RBO is pressed and released

After 10 button presses, turn on the light on RCO for one second

- 12 -

January 4, 2024

NDSU

Desings using a Microcontroller ECE 401

PO .
'Yy
lll,.l---”!

!\:5;'

[
 €a » n ®

Counting rising edges on RB7

RB7 is tied to ground through a 3.3k resistor (somewhat arbitrary)
When RB7 is connected to +5V, PORTC counts and a beep is sent to RA1

After 10 counts, RAO goes high for one second

JSG - 13 - January 4, 2024

N DSU Desings using a Microcontroller ECE 401

C Language Summary

Character Definitions:

Name bits range

char 8 -128 to +127

unsigned char 8 0to 255

int 16 -32,768 to +32,767

unsigned int 16 0 to 65,535

long 32 -2,147,583,648 to +2,147,483,647
unsigned long 32 0 to 4,294,967,295

float 32 3.4e-38 to 3.4e38

double 64 1.7e-308 to 1.7e+308

long double 80 3.4e-4932 to 3.4e+4932

Arithmetic Operations

Name Example Operation
+ 1+2=3 addition
- 3-2=1 subtraction
* 2*%3=6 multiplication
/ 6/3=2 division
% 5%2=1 modulus
++ A++ use then increment
++A increment then use
-- A-- use then decrement
--A decrement then use
& 14&7=6 logical AND
[1417=15 logical OR
A 14727=9 logical XOR
>> 14>>2=3 shift right. Shift in zeros from left.
<< 14 <<2 =56 shift left. Shift zeros in from right.

Defining Variables:

int A; A is an integer

int A=3; A in an integer initialized to 3.

int A, B, C; A, B, and C are integers

int A=B=C=1; A, B, and C are integers, each initialized to 1.

int A[5]=1{1,2,3,4,5}; A is an array initialized to 1..5. Note: A[0]=1.
Arrays:

int R[52]; Save space for 52 integers

int T[2][52]; Save space for two arrays of 52 integers.

note: The PIC18F4626 only has 3692 bytes of RAM, so don't get carried away with arrays.

General C Commands:

Conditional Expressions:

! not. !'PORTB means the compliment of PORTB.
assignment
test if equal.

JSG - 14 - January 4, 2024

N DSU Desings using a Microcontroller

ECE 401

> greater than

< less than

>= greater than or equal
!

not equal

IF Statement

if (condition expression)
{ statement or group of statements

}

example: if PortB pin O is 1, then increment port C:
if (RBO==1) {
PORTC += 1;
}

IF - ELSE Statements

if (condition expression)
{ statement or group of statements
}
else {
alternate statement or group of statements

}

Example: if PortB bit O is 1, then increment port C, else decrement port C:

if (RBO==1)
PORTC += 1;
}

else
PORTC -= 1;
}

SWITCH (CASE)

switch (value)

{

case value: statement or group of statements
case value: statement or group of statements
defacult: statement or group of statements

}
WHILE LOOP

while (condition is true) {
statement or group of statements

}

JSG - 15 -

January 4, 2024

N DSU Desings using a Microcontroller ECE 401

DO LOOP

do {
statement or group of statements
} while (condition is true);

FOR-NEXT

for (starting value; do while true; changes) {
statement or group of statements

}

Infinite Loop

while (1) {
statement or group of statements

}

note: Zero is false. Anything other than zeros is true. while(130) also works for an infinite loop.

Subroutines in C:

To define a subroutine, you need to
+ Declare how this subroutine is called (typically in a .h file)

+ Declare what the subroutine is.
The format is

returned_variable_type = subroutine_name(passed_variable_types).

Example: Write a subroutine which returns the square of a number:
// Subroutine Declarations

int Square (int Data);
// Subroutines

int Square (int Data) {
int Result;
Result = Data * Data;
return (Result) ;

}

JSG - 16 - January 4, 2024

N DSU Desings using a Microcontroller ECE 401

Standard C Code Structure

So that others can modify your code more easily, a standard structure is to be used. This places all code
in the following order:

/)
// Program Name

//

// Author

// Date

// Description

// Revision History

// Global Variables

// Subroutine Declarations

#include <pic.h> // where PORTB etc. is defined

// Subroutines

void interrupt IntServe (void) {} // holder for interrupts (see week 8)
// Main Routine

void main (void)

{

TRISA = 0; // all pins on PORTA are output
TRISB = OxFF; // all pins on PORTB are input
TRISC = O; // all pins on PORTC are output
ADCON1 = 15; // PORTA and PORTE are binary (vs analog)
PORTA = 1; // initialize PORTA to 1 = b00000001
PORTC = 3; // initialize PORTC to 3 = b00000011
while (1) {
PORTC = PORTB; // copy whatever is input to PORTB to PORTC

}i
}

// end of program

JSG

- 17 - January 4, 2024

N DSU Desings using a Microcontroller ECE 401

Address Register Bit
Name 7 6 5 4 3 2 1 0

0xF80 PORTA - - RAS RA4 RA3 RA2 RAL RAQ
0xF81 PORTB RB7 RB6 RBS RB4 RB3 RB2 RB1 RBO
0xF82 PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RCO
0xF83 PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RDO
0xF84 PORTE - - - - RE3 RE2 RE1 REO
0xF85 LATA - - LATAS LATA4 LATA3 LATA2 LATAL LATAO
0xF86 LATB LATB7 LATB6 LATBS LATB4 LATB3 LATB2 LATB1 LATBO
0xF87 LATC LATC7 LATC6 LATCS LATC4 LATC3 LATC2 LATC1 LATCO
0xF88 LATD LATD7 LATD6 LATDS LATD4 LATD3 LATD2 LATD1 LATDO
0xF89 LATE - - - - LATE3 LATE2 LATEL LATEO
0xF92 TRISA - - TRISAS TRISA4 TRISA3 TRISA2 TRISAL TRISAQ
0xF93 TRISB TRISB7 TRISB6 TRISBS TRISB4 TRISB3 TRISB2 TRISB1 TRISBO
0xF94 TRISC TRISC7 TRISC6 TRISCS TRISC4 TRISC3 TRISC2 TRISC1 TRISCO
0xF95 TRISD TRISD7 TRISD6 TRISDS TRISD4 TRISD3 TRISD2 TRISD1 TRISDO
0xF96 TRISE - - - - TRISE3 TRISEZ2 TRISEL TRISEQ
0xF9D PEIEL PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE
0xFI9E PIR1 PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF
OxFI9F IPR1 PSPIP ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP
0xFAQ PIE2 OSCFIE CMIE - EEIE BCLIE HLVDIE TMR3IE CCP2IE
OxFAl PIR2 OSCFIF CMIF - EEIF BCLIF HLVDIF TMR3IF CCP21IF
0xFA2 IPR2 OSCF'IP CMIP - EEIP BCLIP HLVDIP TMR3IP CCP21IP
O0xFAB RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D
0xFAC TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D
0xFAD TXREG 8 bit register (0-255)
OxFAE RCREG 8 bit register (0-255)
OxFAF SPBRG 8 bit register (0-255)
0xFBO SPBRGH 8 bit register (0-255)
0xFB1 T3CON T3RD16 T3CCP2 T3CKPS1 T3CKPSO T3CCP1 T3CCP1 TMR3CS TMR30N
0xFB2 TMR3 16 bit register (0..65535)
0xFB4 CMCON C20UT ClouT C2INV ClINV CISs CM2 CM1 CMO
0xFB5 CVRCON CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVRO
0xFB6 ECCP1AS ECCPASE ECCPAS2 ECCPAS1 ECCPASO PSSAC1 PSSACO PSSBD1 PSSBDO
0xFB7 PWM1CON PRSEN PDC6 PDC5 PDC4 PDC3 PDC2 PDC1 PDCO
0xFB8 BAUDCON ABDOVF RCIDL RXDTP TXCKP BRG16 - WUE ABDEN
0xFBA CCP2CON — - DC2B1 DC2BO CCP2M3 CCP2M2 CCP2M1 CCP2MO
0xFBB CCPR2 16 bit register (0..65535)
0xFBD CCP1CON P1M1 P1MO DC1B1 DC1BO CCP1M3 CCP1M2 CCP1M1 CCP1MO
0xFBE CCPR1 16 bit register (0..65535)
0xFCO ADCON2 ADFM — ACQT2 ACQT1 ACQTO ADCS2 ADCS1 ADCSO0
0xFC1 ADCON1 - — VCFG1 VCFGO PCFG3 PCFG2 PCFG1 PCFGO
0xFC2 ADCONO — - CHS3 CHS2 CHS1 CHSO GODONE ADON
0xFC3 ADRES 16 bit register (0..65535)
0xFC5 SSPCON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN
0xFC6 SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPMO
0xFC7 SSPSTAT SMP CKE DA STOP START RW UA BF
0xFCA T2CON - T20UTPS3 | T20UTPS2 | T20UTPS1 | T20UTPSO | TMR20N T2CKPS1 | T2CKPSO
0xFCB PR2 8 bit register (0-255)
0xFCC TMR2 8 bit register (0-255)
0xFCD T1CON T1RD16 T1RUN T1CKPS1 T1CKPSO |T1OSCEN | T1SYNC TMR1CS TMR1ON

JSG - 18 - January 4, 2024

N DSU Desings using a Microcontroller ECE 401

0xFCE TMR1 16 bit register (0..65535)

0xFDO RCON IPEN SBOREN — RI TO PD POR BOR
0xFD5 TOCON TMROON TO8BIT TOCS TOSE PSA TOPS2 TOPS1 TOPSO
0xFD6 TMRO 16 bit register (0..65535)

0xFD8 STATUS - — — NEGATIVE ov ZERO DC CARRY
O0xFFO INTCON3 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF
OxFF1 INTCON2 RBPU INTEDGO INTEDG1 INTEDG2 - TMROIP - RBIP
OxFF2 INTCON GIE PEIE TMROIE INTOIE RBIE TMROIF INTOIF RBIF

JSG - 19 - January 4, 2024

