CircuitLab, Diodes, & Transistors

ECE 401 Senior Design I

Week #3

Please visit Bison Academy for corresponding lecture notes, homework sets, and videos www.BisonAcademy.com

Introduction

In ECE 401, you can choose from a dozen different circuits to build. Regardless of which one you select, your overall design:

- Must operate at 5VDC
- Must have LEDs operating at 20mA +/- 5mA
- Must have one NPN and one PNP transistor (or more), capable of driving a 100mA load
- Must have at least one IC (PIC18F2620, MCP602 op-amp, 555 timer)

This lecture covers:

- Analysis and design of LED circuits,
- Analysis and design or NPN and PNP electronic switches,

CircuitLab

CircuitLab is a circuit simulator, which is very similar to SPICE or PSPICE, and has a graphical front end. The graphical front end makes CircuitLab very easy to use.

What CircuitLab Does

Lets you check your design using a nonlinear circuit simulator.

- Hand Calculations: Usually make approximations
 - Ideal Diode
 - Vce(sat) = 0.2V
- CircuitLab: More accurate, nonlinear models

Lets you adjust your circuit if necessary

- Tweak to set the current through the diodes to 10mA
- Tweak to set the duty cycle to 50%
- etc.

Once your design is finalized, you can build it on a breadboard

Classes where CircuitLab is Useful

Circuits I and II

- Linear Circuits
- Electronics I and II
 - Nonlinear Circuits
- Digital Systems
 - Boolean Logic
 - Controls Systems
 - Dynamic Systems

Likewise, CircuitLab is pretty useful

Signing Up for CircuitLab

There are several ways you can use CircuitLab:

- Trial Version: If you don't register or sign in, you're using the trial version. This limits you to 1/2 hour per session and you cannot save your work.
- Free Version: Register with CircuitLab using your NDSU email address (@ndsu.edu). The ECE department pays for a site license so all NDSU students can use CircuitLab for free. There is no time limit and you can save your work.
- Personal Version: Sign up with your personal email account at a cost of \$24/year. Again, there is no time limit and you can save your work. Plus, you still have your work after you graduate.

Diodes

• Covered in ECE 320 Electronics I.

Diodes act as valves:

- Current allow current to flow from the anode to the cathode,
- Current block current from flowing the other way.

Because of this, the symbol for a diode looks like an arrow: this arrow serves as a reminder for which way the current can flow.

Symbol for a diode: Diodes only allow current to flow from the anode to the cathode

Diode VI Characteristics

Diodes are nonlinear devices

• This makes analysis of diode circuits difficult

Ideal Diode

- Simplified model of a diode
- Id = 0 when Vd < Vf
- Vd = Vf when Id > 0

Not perfect, but usually good enough

• Use CircuitLab to get better answers

Ideal Diode Model

Vf acts like a turn-on voltage:

- Diode turns on if you apply more than Vf
- Diode turns off if you apply less than Vf

Vf depends upon the diode

- Germanium: Vf = 0.3V
- Silicon: Vf = 0.7V
- Red LED: Vf = 1.9V
- Yellow LED: Vf = 2.0V
- Green LED: Vf = 2.0V

Diode Example (CircuitLab)

In CircuitLab, you can build this circuit through drag and drop.

- R rotates the element
- Double Click to change values
- k = 1000
- M = million
- m = milli
- u = micro

Make sure you have a ground (CircuitLab insists on this)

Once completed, you can determine the voltages and currents by

- Clicking on Add Expression and then click on the voltage node to see that voltage
- Click on one side of a resistor to see the current through that resistor

When the diode is turned on (Id > 0), the voltage drop is 0.7V (ish)

When you try to push current backwards, the diode turns off

- Id = 0 (ideal diode)
- Id = -76.90pA (CircuitLab)

Diodes do conduct current when reverse biased, but it's really small

CircuitLab & Time Domain Simulations

- Similar to an oscilloscope
- Apply a sine wave for V3
- Run the simulation for 2-3 cycles
- Set the sampling rate 1000x smaller (gives 1000 points on the graph)

Resulting Waveform:

- When Vin > 0.7V, the diode turns on
 - Vout = Vin 0.7V (ish)
- When Vin < 0.7V, the diode turns off
 - Vout = 0V

Diode Circuit Analysis:

- Determine which diodes are on and off
 - Not always that easy
- Replace with the ideal diode model
- Determine voltages and currents

Calculations:

$$I_1 = \left(\frac{5V - 0.7V}{1k}\right) = 4.3mA$$
$$I_2 = \left(\frac{5V - 1.9V}{2k}\right) = 1.55mA$$
$$I_3 = \left(\frac{5V - 2.0V}{3k}\right) = 1.00mA$$

Diode Circuit Design:

- Pick the current desired
 - Light is proportional to current
- Calculate the resistance needed

Example: Set Id = 20mA

$$R_{1} = \left(\frac{5V-0.7V}{20mA}\right) = 215\Omega$$

$$R_{2} = \left(\frac{5V-1.9V}{20mA}\right) = 155\Omega$$

$$R_{3} = \left(\frac{5V-2.0V}{20mA}\right) = 150\Omega$$

20mA /

Light Emitting Diodes (LEDs)

LEDs are nothing more than diodes - except that they produce light proportional to the current flowing through them. As diodes, they can be approximated with an ideal-diode model:

- Id = 0 if Vd < Vf
- Vd = Vf if Id > 0

The on-voltage (Vf) depends upon the diode and is usually specified in the diode's data sheets:

LED	Vf	mcd	Wavelength	Cost	Digikey PN
Red	1.9V @ 20mA	30mcd @ 20mA	645nm	\$0.13	732-5016-ND
Yellow	2.0V @ 20mA	450mcd @ 20mA	592nm	\$0.18	732-5018-ND
Green	2.1V @ 20mA	140mcd @ 20mA	572nm	\$0.21	732-5017-ND

With LEDs, brightness is proportional to current

Assuming a 9V source (the kit assume you're using a 9V battery). the current and brightness of the first diode (330 Ohms) is:

$$I = \left(\frac{9V - 2.0V}{330\Omega}\right) = 21.21mA$$

The brightness is then proportional to this current where 20mA = 450mcd:

 $\left(\frac{21.21mA}{20mA}\right)450mcd = 477.2mcd$

Voltage Regulation

In ECE 401,

- Power to your PCB comes from a 9V battery, while
- Your components on your PCB operate off of 5VDC.

Solution: Use a LM7805 regulator

- Pro: Simple circuit
- Con: Efficiency = 55% @ 9V

Example:

- Convert 9V down to 5V, and
- Drive an LED at 10mA from the 5V source

Assuming a red LED

$$R = \left(\frac{5V - 1.9V}{10mA}\right) = 310\Omega$$

Interpreting the Results:

- V2 = 5V (close)
 - The 7805 is doing its job
- V3 = 1.9V (close)
 - The red LED is on
- I3 = 10mA (close)
 - R2 is correct

You could find tune R2 if you really want 10.00mA exactly.

Reverse Polarity Protection & Overcurrent Protection

Another requirement for your PCB in ECE 401 is to add

- Reverse polarity protection
 - connecting 9V to your PCB backwards will not fry your PCB
- Overcurrent protection
 - if your circuit draws too much current, a fuse blows.

There are several ways to do this.

Method #1: Diode + Fuse.

- Diodes do not allow current to flow backwards
 - Blocks current if the 9V battery is inserted backwards
- Fuse blows if the load is too much
 - 1 Ohm resistor replaces the fuse for ECE 401 (2 cents)

Problem:

• Drops 0.7V through the diode

Method #2: Fuse + Diode.

Add a reverse biased diode to ground

- If the 9V battery is connected correctly, the diode remains off.
- If the 9V battery is reversed,
 - The diode turns on, limiting the voltage to the LM7805 to -0.7V,
 - The current through the fuse becomes large (9A), blowing the fuse.

BJT Transistors

Bipolar Junction Transistors

- Electronic switches (you can turn a device on and off using 0V & 5V),
- Which amplify current (1mA can turn on and off a device which draws 100mA)

The current amplification and the maximum current a given BJT transistor can handle depends upon which transistor you're using.

Spec	3904 NPN	3906 PNP
Current Gain (min)	100	100
Max Current	200mA	200mA
Vbe (on)	0.7V	0.7V
Vce (sat)	0.2V	0.2V
Cost (ea)	\$0.11	\$0.11

NPN and PNP Transistors

Two types of BJT transistors exist:

- PNP: an electronic switch which connects your device to +5V, or
- NPN: an electronic switch which connects your device to ground.

The basic circuit for each of these are as follows:

Diode from Base to Emitter

The arrow going between the base and the emitter is all important:

- It represents a diode (a pn junction)
- It tells you the direction current flows
- The base current controls the collector current

Ib limits the collector current

 $I_c = \beta I_b = 100I_b$

It does this by dumping voltage

• Whatever it takes to set Ic

Load Lines

A good way to see how a transistor switch operates

- When Ic = 0mA, Vce = 5V
 - the x-axis intercept
- When Vce = 0V, Ic = 20mA
 - the y-axis intercept

The line connecting these two points is called *the load line*.

Any solution has to be on the load line somewhere.

Off State:

- Ib = 0
- Ic = 100*Ib = 0
- Vce = 5V

Active Region

- 0mA < Ib < 20mA
- 5V > Vce > 0.2V
- Ic = 100*Ib

On State

- Saturated Region
- 100*Ib > 20mA
- Vce = 0.2V

The Active Region is Bad

You want to operate in the ON and OFF state

Off State

- I = 0
- P = V*I = 0

On State

- V = 0.2V (almost zero)
- I = 20mA
- P = 4mW (almost zero

Active Region

- P = V*I
- The transistor gets hot
- You start to melt your breadboard

Analysis of Transistor Switches:

• Same equations for PNP and NPN

Off State

• Easy: Ib = Ic = 0

On State:

$$V_{ce} = 200mV$$
$$I_c = \left(\frac{5V - V_f - V_{ce}}{R_c}\right)$$
$$I_b = \left(\frac{5V - 0.7V}{R_b}\right)$$

Check that you're saturated:

$$\beta I_b > I_c$$
$$I_b > \left(\frac{I_c}{100}\right)$$

BJT Switch Example

Assume

- Rc = 50 Ohms
- Rb = 1k Ohms
- Vf = 1.9V (red LED)
- 3904 NPN transistor with a current gain of 100

What you expect when Vin = 5V is

- Vb = 0.7V the drop across a silicon diode
- Vc = 0.2V saturated
- Ic = 58.0 mA

$$I_c = \left(\frac{5V - 1.9V - 0.2V}{50\Omega}\right) = 58.0 mA$$

In CircuitLab, what you get is close but slightly different:

- Vb = 0.8118V
 - calculated = 0.7V (ideal diode)
- Vc = 0.0909V
 - calculted = 0.2V
- I(D1) = 51.11 mA
 - Close to 58.0mA

Operation in the Active Region

If Ib is too small, then the transistor enters the active region (bad)

Example: Increase Rb to 100k

- Ib = 42.93uA
- Ic = min(β Ib, max(Ic)) = 6.21mA
- Vce = 2.85V (active region)

What happens when you operate in the active region?

- Ic < 58mA
- The transitor gets hot
 - and can melt the breadboard

Avoid operating in the active region when using a transistor as a switch

• Keep Vce = 0.2V (ish)

Design of Transistor Switches:

- Pick Rc to set the desired current
- Pick Rb to saturate the transistor
 - Ib > Ic/100

For example, design a circuit

- To turn on and off a red LED
- At 20mA when on,
- Using a 0V/5V input capable of driving at most 5mA.

Solution:

First pick Rc to set the current to 20mA

$$R_c = \left(\frac{5V - 1.9V - 0.2V}{20mA}\right) = 145\Omega$$

Next, pick Ib so that the transistor is saturated

$$I_b > \left(\frac{I_c}{100}\right) = 0.2mA$$

Let Ib = 1mA $R_c = \left(\frac{5V - 0.7V}{1mA}\right) = 4.3k\Omega$

Same equations for a PNP switch Resuting Circuit

NPN & PNP Switch

Homework #3:

Fill In Section #2: Requirements

- Engineering Requirements
- Gantt Chart

Engineering Requirements (partial list):

- Must operate off of 5VDC
- Must include at least one integrated circuit
- Must include at least one LED with Id = 20mA + 5mA
- Must include at least one NPN and one PNP transistor
 - Base current allows 100mA
- Power supply = 9V battery (mark +/- polarity)
 - use a LM7805 regulator to drop 9V to 5V
- Must have a reverse-polarity protection diode
- Must have a 1/4 Watt 1-Ohm resistor in series with the power supply

(continued next page)

Update Section #3: Paper Design in your OneNote document Include:

- Your circuit schematics
- Calculations for R's and C's
- Calculations for voltages you exect to see.

Note: If you're using a microprocessor, assume the output pins are either 0V or 5V.