CircuitLab, Diodes, \& Transistors ECE 401 Senior Design I

Week \#3

Please visit Bison Academy for corresponding lecture notes,
homework sets, and videos
www.BisonAcademy.com

Introduction

In ECE 401, you can choose from a dozen different circuits to build.
Regardless of which one you select, your overall design:

- Must operate at 5VDC
- Must have LEDs operating at $20 \mathrm{~mA}+/-5 \mathrm{~mA}$
- Must have one NPN and one PNP transistor (or more), capable of driving a 100 mA load
- Must have at least one IC (PIC18F2620, MCP602 op-amp, 555 timer)

This lecture covers:

- Analysis and design of LED circuits,
- Analysis and design or NPN and PNP electronic switches,

CircuitLab

CircuitLab is a circuit simulator, which is very similar to SPICE or PSPICE, and has a graphical front end. The graphical front end makes CircuitLab very easy to use.

What CircuitLab Does

Lets you check your design using a nonlinear circuit simulator.

- Hand Calculations: Usually make approximations
- Ideal Diode
- $\operatorname{Vce}(s a t)=0.2 \mathrm{~V}$
- CircuitLab: More accurate, nonlinear models

Lets you adjust your circuit if necessary

- Tweak to set the current through the diodes to 10 mA
- Tweak to set the duty cycle to 50%
- etc.

Once your design is finalized, you can build it on a breadboard

Classes where CircuitLab is Useful

Circuits I and II

- Linear Circuits

Electronics I and II

- Nonlinear Circuits

Digital Systems

- Boolean Logic
- Controls Systems
- Dynamic Systems

Likewise, CircuitLab is pretty useful

Signing Up for CircuitLab

There are several ways you can use CircuitLab:

- Trial Version: If you don't register or sign in, you're using the trial version. This limits you to $1 / 2$ hour per session and you cannot save your work.
- Free Version: Register with CircuitLab using your NDSU email address (@ndsu.edu). The ECE department pays for a site license - so all NDSU students can use CircuitLab for free. There is no time limit and you can save your work.
- Personal Version: Sign up with your personal email account at a cost of \$24/year. Again, there is no time limit and you can save your work. Plus, you still have your work after you graduate.

Diodes

- Covered in ECE 320 Electronics I.

Diodes act as valves:

- Current allow current to flow from the anode to the cathode,
- Current block current from flowing the other way.

Because of this, the symbol for a diode looks like an arrow: this arrow serves as a reminder for which way the current can flow.

Symbol for a diode: Diodes only allow current to flow from the anode to the cathode

Diode VI Characteristics

Diodes are nonlinear devices

- This makes analysis of diode circuits difficult Ideal Diode
- Simplified model of a diode
- $\mathrm{Id}=0$ when $\mathrm{Vd}<\mathrm{Vf}$
- $\mathrm{Vd}=\mathrm{Vf}$ when $\mathrm{Id}>0$

Not perfect, but usually good enough

- Use CircuitLab to get better answers

Ideal Diode Model

Vf acts like a turn-on voltage:

- Diode turns on if you apply more than Vf
- Diode turns off if you apply less than Vf

Vf depends upon the diode

- Germanium: Vf $=0.3 \mathrm{~V}$
- Silicon: Vf $=0.7 \mathrm{~V}$
- Red LED: Vf $=1.9 \mathrm{~V}$
- Yellow LED: Vf $=2.0 \mathrm{~V}$
- Green LED: Vf $=2.0 \mathrm{~V}$

Diode Example (CircuitLab)

In CircuitLab, you can build this circuit through drag and drop.

- R rotates the element
- Double Click to change values
- $\mathrm{k}=1000$
- $\mathrm{M}=$ million
- $\mathrm{m}=$ milli
- $\mathrm{u}=$ micro

Make sure you have a ground (CircuitLab insists on this)

Once completed, you can determine the voltages and currents by

- Clicking on Add Expression and then click on the voltage node to see that voltage
- Click on one side of a resistor to see the current through that resistor When the diode is turned on ($\mathrm{Id}>0$), the voltage drop is 0.7 V (ish)

When you try to push current backwards, the diode turns off

- $\mathrm{Id}=0$ (ideal diode)
- Id $=-76.90 \mathrm{pA}$ (CircuitLab)

Diodes do conduct current when reverse biased, but it's really small

CircuitLab \& Time Domain Simulations

- Similar to an oscilloscope
- Apply a sine wave for V3
- Run the simulation for 2-3 cycles
- Set the sampling rate 1000 x smaller (gives 1000 points on the graph)

Resulting Waveform:

- When Vin $>0.7 \mathrm{~V}$, the diode turns on
- Vout $=$ Vin - 0.7 V (ish)
- When Vin $<0.7 \mathrm{~V}$, the diode turns off
- Vout $=0 \mathrm{~V}$

Diode Circuit Analysis:

- Determine which diodes are on and off
- Not always that easy
- Replace with the ideal diode model
- Determine voltages and currents

Calculations:

$$
\begin{aligned}
& I_{1}=\left(\frac{5 \mathrm{~V}-0.7 \mathrm{~V}}{1 k}\right)=4.3 \mathrm{~mA} \\
& I_{2}=\left(\frac{5 \mathrm{~V}-1.9 \mathrm{~V}}{2 k}\right)=1.55 \mathrm{~mA} \\
& I_{3}=\left(\frac{5 \mathrm{~V}-2.0 \mathrm{~V}}{3 k}\right)=1.00 \mathrm{~mA}
\end{aligned}
$$

Diode Circuit Design:

- Pick the current desired
- Light is proportional to current
- Calculate the resistance needed

Example: Set Id $=20 \mathrm{~mA}$

$$
\begin{aligned}
& R_{1}=\left(\frac{5 V-0.7 \mathrm{~V}}{20 \mathrm{~mA}}\right)=215 \Omega \\
& R_{2}=\left(\frac{5 V-1.9 \mathrm{~V}}{20 \mathrm{~mA}}\right)=155 \Omega \\
& R_{3}=\left(\frac{5 V-2.0 \mathrm{~V}}{20 \mathrm{~mA}}\right)=150 \Omega
\end{aligned}
$$

Light Emitting Diodes (LEDs)

LEDs are nothing more than diodes - except that they produce light proportional to the current flowing through them. As diodes, they can be approximated with an ideal-diode model:

- $\mathrm{Id}=0$ if $\mathrm{Vd}<\mathrm{Vf}$
- $\mathrm{Vd}=\mathrm{Vf}$ if $\mathrm{Id}>0$

The on-voltage (Vf) depends upon the diode and is usually specified in the diode's data sheets:

LED	Vf	mcd	Wavelength	Cost	Digikey PN
Red	$1.9 \mathrm{~V} @ 20 \mathrm{~mA}$	$30 \mathrm{mcd} @ 20 \mathrm{~mA}$	645 nm	$\$ 0.13$	$732-5016-\mathrm{ND}$
Yellow	$2.0 \mathrm{~V} @ 20 \mathrm{~mA}$	$450 \mathrm{mcd} @ 20 \mathrm{~mA}$	592 nm	$\$ 0.18$	$732-5018-N D$
Green	$2.1 \mathrm{~V} @ 20 \mathrm{~mA}$	$140 \mathrm{mcd} @ 20 \mathrm{~mA}$	572 nm	$\$ 0.21$	$732-5017-\mathrm{ND}$

With LEDs, brightness is proportional to current

Assuming a 9V source (the kit assume you're using a 9 V battery). the current and brightness of the first diode (330 Ohms) is:

$$
I=\left(\frac{9 V-2.0 V}{330 \Omega}\right)=21.21 \mathrm{~mA}
$$

The brightness is then proportional to this current where $20 \mathrm{~mA}=450 \mathrm{mcd}$:

$$
\left(\frac{21.21 m A}{20 m A}\right) 450 m c d=477.2 m c d
$$

Voltage Regulation

In ECE 401,

- Power to your PCB comes from a 9V battery, while
- Your components on your PCB operate off of 5VDC.

Solution: Use a LM7805 regulator

- Pro: Simple circuit
- Con: Efficiency = 55\% @ 9V

Example:

- Convert 9V down to 5V, and
- Drive an LED at 10 mA from the 5 V source

Assuming a red LED

$$
R=\left(\frac{5 V-1.9 \mathrm{~V}}{10 m A}\right)=310 \Omega
$$

Interpreting the Results:

- $\mathrm{V} 2=5 \mathrm{~V}$ (close)
- The 7805 is doing its job
- V3 $=1.9 \mathrm{~V}$ (close)
- The red LED is on
- $\mathrm{I} 3=10 \mathrm{~mA}$ (close)
- R2 is correct

You could find tune R2 if you really want 10.00 mA exactly.

Reverse Polarity Protection \& Overcurrent Protection

Another requirement for your PCB in ECE 401 is to add

- Reverse polarity protection
- connecting 9V to your PCB backwards will not fry your PCB
- Overcurrent protection
- if your circuit draws too much current, a fuse blows.

There are several ways to do this.

Method \#1: Diode + Fuse.

- Diodes do not allow current to flow backwards
- Blocks current if the 9 V battery is inserted backwards
- Fuse blows if the load is too much
- 1 Ohm resistor replaces the fuse for ECE 401 (2 cents)

Problem:

- Drops 0.7V through the diode

Method \#2: Fuse + Diode.

Add a reverse biased diode to ground

- If the 9 V battery is connected correctly, the diode remains off.
- If the 9 V battery is reversed,
- The diode turns on, limiting the voltage to the LM7805 to -0.7 V ,
- The current through the fuse becomes large (9A), blowing the fuse.

BJT Transistors

Bipolar Junction Transistors

- Electronic switches (you can turn a device on and off using $0 \mathrm{~V} \& 5 \mathrm{~V}$),
- Which amplify current (1 mA can turn on and off a device which draws 100 mA)

The current amplification and the maximum current a given BJT transistor can handle depends upon which transistor you're using.

Spec	3904 NPN	3906 PNP	
Current Gain (min)	100	100	
Max Current	200 mA	200 mA	
\|Vbe	(on)	0.7 V	0.7 V
\mid Vce\| (sat)	0.2 V	0.2 V	
Cost (ea)	$\$ 0.11$	$\$ 0.11$	

NPN and PNP Transistors

Two types of BJT transistors exist:

- PNP: an electronic switch which connects your device to +5 V , or
- NPN: an electronic switch which connects your device to ground.

The basic circuit for each of these are as follows:

NPN Switch

PNP Switch

Diode from Base to Emitter

The arrow going between the base and the emitter is all important:

- It represents a diode (a pn junction)
- It tells you the direction current flows
- The base current controls the collector current

Ib limits the collector current

$$
I_{c}=\beta I_{b}=100 I_{b}
$$

It does this by dumping voltage

- Whatever it takes to set Ic

NPN Switch

Load Lines

A good way to see how a transistor switch operates

- When Ic $=0 \mathrm{~mA}$, Vce $=5 \mathrm{~V}$
- the x-axis intercept
- When Vce $=0 \mathrm{~V}$, Ic $=20 \mathrm{~mA}$
- the y-axis intercept

The line connecting these two points is called the load line.

Any solution has to be on the load line somewhere.

Off State:

- $\mathrm{Ib}=0$
- $\mathrm{Ic}=100 * \mathrm{Ib}=0$
- Vce $=5 \mathrm{~V}$

Active Region

- $0 \mathrm{~mA}<\mathrm{Ib}<20 \mathrm{~mA}$
- $5 \mathrm{~V}>\mathrm{Vce}>0.2 \mathrm{~V}$
- $\mathrm{Ic}=100 * \mathrm{Ib}$

On State

- Saturated Region
- $100 * \mathrm{Ib}>20 \mathrm{~mA}$
- $\mathrm{Vce}=0.2 \mathrm{~V}$

The Active Region is Bad

You want to operate in the ON and OFF state Off State

- $\mathrm{I}=0$
- $\mathrm{P}=\mathrm{V} * \mathrm{I}=0$

On State

- $\mathrm{V}=0.2 \mathrm{~V}$ (almost zero)
- $\mathrm{I}=20 \mathrm{~mA}$
- $\mathrm{P}=4 \mathrm{~mW}$ (almost zero

Active Region

- $\mathrm{P}=\mathrm{V} * \mathrm{I}$
- The transistor gets hot
- You start to melt your breadboard

Analysis of Transistor Switches:

- Same equations for PNP and NPN

Off State

- Easy: $\mathrm{Ib}=\mathrm{Ic}=0$

On State:

$$
\begin{aligned}
& V_{c e}=200 m V \\
& I_{c}=\left(\frac{5 V-V_{f}-V_{c e}}{R_{c}}\right) \\
& I_{b}=\left(\frac{5 V-0.7 V}{R_{b}}\right)
\end{aligned}
$$

Check that you're saturated:

$$
\begin{aligned}
& \beta I_{b}>I_{c} \\
& I_{b}>\left(\frac{I_{c}}{100}\right)
\end{aligned}
$$

NPN Switch

BJT Switch Example

Assume

- $\mathrm{Rc}=50$ Ohms
- $\mathrm{Rb}=1 \mathrm{k}$ Ohms
- $\mathrm{Vf}=1.9 \mathrm{~V}$ (red LED)
- 3904 NPN transistor with a current gain of 100

What you expect when Vin $=5 \mathrm{~V}$ is

- $\mathrm{Vb}=0.7 \mathrm{~V}$ the drop across a silicon diode
- $\mathrm{Vc}=0.2 \mathrm{~V}$ saturated
- $\mathrm{Ic}=58.0 \mathrm{~mA}$

$$
I_{c}=\left(\frac{5 V-1.9 \mathrm{~V}-0.2 \mathrm{~V}}{50 \Omega}\right)=58.0 \mathrm{~mA}
$$

NPN Switch

In CircuitLab, what you get is close but slightly different:

- $\mathrm{Vb}=0.8118 \mathrm{~V}$
- calculated $=0.7 \mathrm{~V}$ (ideal diode)
- $\mathrm{Vc}=0.0909 \mathrm{~V}$
- calculted $=0.2 \mathrm{~V}$
- $\mathrm{I}(\mathrm{D} 1)=51.11 \mathrm{~mA}$
- Close to 58.0 mA

Operation in the Active Region

If Ib is too small, then the transistor enters the active region (bad)
Example: Increase Rb to 100k

- $\mathrm{Ib}=42.93 \mathrm{uA}$
- $\mathrm{Ic}=\min (\beta \mathrm{Ib}, \max (\mathrm{Ic}))=6.21 \mathrm{~mA}$
- $\mathrm{Vce}=2.85 \mathrm{~V}$ (active region)

What happens when you operate in the active region?

- Ic $<58 \mathrm{~mA}$
- The transitor gets hot
- and can melt the breadboard

Avoid operating in the active region when using a transistor as a switch

- Keep Vce $=0.2 \mathrm{~V}$ (ish)

Design of Transistor Switches:

- Pick Rc to set the desired current
- Pick Rb to saturate the transistor
- Ib > Ic/100

For example, design a circuit

- To turn on and off a red LED
- At 20 mA when on,
- Using a $0 \mathrm{~V} / 5 \mathrm{~V}$ input capable of driving at most 5 mA .

NPN Switch

Solution:

First pick Rc to set the current to 20 mA

$$
R_{c}=\left(\frac{5 V-1.9 V-0.2 V}{20 m A}\right)=145 \Omega
$$

Next, pick Ib so that the transistor is saturated

$$
I_{b}>\left(\frac{I_{c}}{100}\right)=0.2 \mathrm{~mA}
$$

Let $\mathrm{Ib}=1 \mathrm{~mA}$

$$
R_{c}=\left(\frac{5 V-0.7 V}{1 m A}\right)=4.3 k \Omega
$$

Same equations for a PNP switch
Resuting Circuit

NPN Switch

NPN \& PNP Switch

PNP Switch

Homework \#3:

Fill In Section \#2: Requirements

- Engineering Requirements
- Gantt Chart

Engineering Requirements (partial list):

- Must operate off of 5VDC
- Must include at least one integrated circuit
- Must include at least one LED with Id $=20 \mathrm{~mA}+/-5 \mathrm{~mA}$
- Must include at least one NPN and one PNP transistor
- Base current allows 100 mA
- Power supply $=9 \mathrm{~V}$ battery (mark +/- polarity)
- use a LM7805 regulator to drop 9V to 5 V
- Must have a reverse-polarity protection diode
- Must have a 1/4 Watt 1-Ohm resistor in series with the power supply
(continued next page)

Update Section \#3: Paper Design in your OneNote document Include:

- Your circuit schematics
- Calculations for R's and C's
- Calculations for voltages you exect to see.

Note: If you're using a microprocessor, assume the output pins are either 0 V or 5 V .

