Op-Amps \& 555 Timers

 ECE 401 Senior Design I

 ECE 401 Senior Design I}

Week \#4

Please visit Bison Academy for corresponding lecture notes,
homework sets, and videos
www.BisonAcademy.com

Operational Amplifiers (Op-Amps)

One of the requirements for your 401 project is it must include an integrated circuit (IC). Usually, this is an op-amp, a 555 timer, or a PIC processor. Op-amps are really useful devices that can do all sorts of things. With op-amps, you can build

- Comparitors
- Schmitt Triggers
- Half-wave and full-wave rectifiers,
- Envelope detectors

- Amplifiers
- Filters
to name just a few. Op-amps are just darn useful.

Op-Amps in CircuitLab

Two types of op-amps are available

- No power supply
- Use for analog circuits (filters, amplifiers, etc)
- +/- Power Supply
- Use for digital circuits (Comparitors, Schmitt Triggers)

MCP602 Op-Amp

- The heart of a comparitor

Use an MCP602:

- It can operate from a single 5 V power supply - range is 3 V to 6 V
- It's a rail-to-rail op-amp.
- Output can go all the way up to 5.00 V
- Output can go all the way down to 0.00 V
- It's a dual op-amp
- you get two op-amps in each IC

The MCP602 is a high-gain differential amplifier, where

$$
V_{o}=200,000\left(V_{p}-V_{m}\right)
$$

What this means is

- Vp > Vm
- The output rails at the upper power supply (5 V)
- $\mathrm{Vp}<\mathrm{Vm}$
- The output rails at the lower power supply (0 V)

This allows you to build several different circuits.

Comparitor: $\mathrm{Y}=(\mathrm{Vin}>2.3 \mathrm{~V})$

Turn on an LED when Vin $>2.3 \mathrm{~V}$

- Connect Vin to Vp
- Connect 2.3 V to Vm
- This produces the function: $\mathrm{Y}=\mathrm{Vin}>2.3 \mathrm{~V}$

If you swap Vp and Vm , you get the opposite ($\mathrm{Vin}<2.3 \mathrm{~V}$)

Checking in CircuitLab

- Use an op-amp with the voltage inputs
- Tells CircuitLab what is logic $1(5 \mathrm{~V})$ and $0(0 \mathrm{~V})$.
- Use an AC input for Vin.
- When Vin $>2.3 \mathrm{~V}$, Y slams to 5 V .
- When Vin $<2.3 \mathrm{~V}$, Y slams to 0 V

Time-Domain Simulation

When Vin $>2.3 \mathrm{~V}$

- $\mathrm{V}(\mathrm{Y})=5 \mathrm{~V}$ (on)
- $\mathrm{Vc}=0.2 \mathrm{~V}$ (the transistor is saturated)

When Vin < 2.3 V

- $\mathrm{V}(\mathrm{Y})=0 \mathrm{~V}$ (off)
- $\mathrm{Vc}=5 \mathrm{~V}$ (off)

Comparitor: $\mathrm{Y}=(\mathrm{T}>\mathbf{2 0 C})$

First, convert temperature to resistance

$$
R=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

Convert resitance to voltage

$$
V_{x}=\left(\frac{R}{R+1000}\right) 5 V
$$

Connect Vx to Vm

- As T goes up
- R goes down
- Vx goes down
- Y goes up

Connect Vp to $\operatorname{Vx}(20 \mathrm{C})$

- $\mathrm{R}=1250.59 \mathrm{Ohms}$
- $\mathrm{Vx}=2.778 \mathrm{~V}$

Voltage Divide

Note

- If you swap Vp and Vm, you get the opposite (light is on when $T<20 C$).
- If you change R to a light sensor, the LED turns on and off with light level
- If you change R to a magnetic field sensor, the LED turns on and off with magnetic field strength

Schmitt Triggers

Add hysteresis to avoid chatter

- Add positive feedback
$\mathrm{V}($ on $)>\mathrm{V}($ off $)$
- Connect Vin to the plus input
$\mathrm{V}($ on $)<\mathrm{V}($ off $)$
- Connect Vin to the minus input

The offset is $\mathrm{V}(\mathrm{on})$ in both cases

Example: design a circuit which turns an LED

- On when T $>25 \mathrm{C}$ and
- Off when T < 20C

When $20 \mathrm{~V}<\mathrm{T}<25 \mathrm{C}$, the LED remains unchanged (on or off).
Step 1: Convert temperature to resistance

- Use a thermistor

$$
R=1000 \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

Step 2: Convert resistance to voltage

- Use a votlage divider with a 1 k resistor

$$
V_{x}=\left(\frac{R}{R+1000}\right) 5 V
$$

20 C	25 C
$\mathrm{R}=1250$	$\mathrm{R}=1000$
$\mathrm{~V}=\mathrm{Voff}=2.778 \mathrm{~V}$	$\mathrm{~V}=\mathrm{Von}=2.500 \mathrm{~V}$

Since Von < Voff, connect to the minus input

$$
\begin{aligned}
& \text { gain }=\left(\frac{\text { change in output }}{\text { change in input }}\right) \\
& \text { gain }=\left(\frac{5 \mathrm{~V}-0 \mathrm{~V}}{2.778 \mathrm{~V}-2.500 \mathrm{~V}}\right)=17.96
\end{aligned}
$$

555 Timers

Really useful IC that can make

- An oscillator
- Keep track of time, make lights blink, etc.
- An light controlled oscillator
- Frequency varies with light level
- Or temperature, magentic field strength,etc.
- A voltage-controlled oscillator
- Allowing you to make siren noises, and
- A one-shot
- Output a single pulse

This course looks at an oscillator

- See ECE 320 for other circuits

555 Timer:

Name comes from three 5k resistors

Funciton of Pins:

- Power and Ground: 0 V and 5 V
- Trigger: Set the SR flip-flop > 2V
- Threshold: Clear the SR flip-flop when $>4 \mathrm{~V}$
- Control Voltage: Change the thresholf voltage
- Discharge:
- When the output is low, Discharge is shorted to ground through a transistor.
- Otherwise, Discharge is a floating pin.

555 Oscillator (take 1):

When V2 reaches $1 / 3$ of 5 V

- Discharge is floating,
- C charges up to $2 / 3$ of 5 V through R1 and R2.

When V2 reaches $2 / 3$ of 5 V

- Discharge is grounded
- C discharges down to $1 / 3$ of 5 V throuth R2

Repeat

Calculations:

$$
\begin{aligned}
& T_{o n}=\left(R_{1}+R_{2}\right) \cdot C \cdot \ln (2) \\
& T_{o f f}=R_{2} \cdot C \cdot \ln (2) \\
& T=\text { Period }=T_{o n}+T_{o f f}=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2)
\end{aligned}
$$

For the values given, this works out to

$$
\begin{aligned}
& T_{\text {on }}=1.386 \mathrm{~ms} \\
& T_{\text {off }}=0.693 \mathrm{~ms} \\
& T=\text { Period }=2.079 \mathrm{~ms} \\
& f=\frac{1}{T}=480.9 \mathrm{~Hz}
\end{aligned}
$$

Note

- The on time is twice as large as the off time. This is due to C charging through R1 and R 2 , while discharging through R2.
- If you replace either resistor with a thermistor or a photo-resistor, the period (and frequency) will change with temperature or light.

555 Oscillator (take 2):

A slight improvement is to add a diode as follows. This results in

- C charging through R1 (R2 is bypassed by the diode), and
- C discharging through R2 (when pin 7 of the 555 timer is grounded).

Calculations

$$
\begin{aligned}
& T_{o n} \approx R_{1} \cdot C \cdot \ln (2) \\
& T_{\text {off }}=R_{2} \cdot C \cdot \ln (2)
\end{aligned}
$$

If $\mathrm{R} 1=\mathrm{R} 2=10 \mathrm{k}$

$$
\begin{aligned}
& T_{\text {on }} \approx 0.693 \mathrm{~ms} \\
& T_{\text {off }}=0.693 \mathrm{~ms} \\
& T=T_{\text {on }}+T_{\text {off }}=1.386 \mathrm{~ms} \\
& f=\frac{1}{T}=721.3 \mathrm{~Hz}
\end{aligned}
$$

note: $T(o n)$ is approximate due to ignoring $V d$ in the calculations for Ton

Checking in CircuitLab

Build the circuit and do a time-domain simulation:

Measure the on/off times

- $\mathrm{T}(\mathrm{on})=6.824 \mathrm{~ms}$
- $\mathrm{T}(\mathrm{off})=5.04 \mathrm{~ms}$
- Not quite 5.00 ms due to the diode when charging (Ton)

Adjust R1 to bring T(on) to 5.00 ms

Iteration \#1

$$
R_{1} \rightarrow\left(\frac{5 m s}{6.824 m s}\right) 72.13 k=52.85 \mathrm{k} \Omega
$$

Rerun the simulation and you get $\mathrm{T}(\mathrm{on})=4.64 \mathrm{~ms}$. Iterate again...

$$
R_{1} \rightarrow\left(\frac{5 m s}{4.64 m s}\right) 52.85 k \Omega=56.95 k \Omega
$$

$\mathrm{T}(\mathrm{on})=5.04 \mathrm{~ms}$

- $\mathrm{C}=0.1 \mathrm{uF}$
- $\mathrm{R} 1=56.95 \mathrm{k}$
- $\mathrm{R} 2=72.13 \mathrm{k}$

Note:

- Calculations get you close
- You may need to tweak values

LED Brightness Control

Vary R1 and R2 to change the on / off times

- Replace R1 and R2 with a potentiometer allows adjustment of the duty cycle

Example: 20\% Duty Cycle

- 20k potentiometer
- R1 $=20 \%$ of $20 \mathrm{k}(4 \mathrm{k})$
- $\mathrm{R} 2=80 \%$ of 20 k (16 k)

CircuitLab Results

- Period $=1.486 \mathrm{~ms}$
- 1.386 ms calculated

- $\mathrm{T}(\mathrm{on})=0.374 \mathrm{~ms}$
- 25.2%
- $\mathrm{T}(\mathrm{off})=1.112 \mathrm{~ms}$
- 74.8\%

Adjusting R1 and R2 can get you to 20% on

