
Designs using a PIC Microcontroller

ECE 401 Senior Design I

Week #5

Please visit Bison Academy for corresponding lecture notes,
homework sets, and videos
www.BisonAcademy.com

Designs using a PIC Microcontroller

Many of the projects in Senior Design I

can be done in

Hardware, or

Software

Microcontrollers are just a tool:

If the tool helps, use it.

If the tool doesn't help, don't use it.

+5V

300

300

300

RB0

RC0

RC1

RC2

PIC18F2620

10k

Microcontroller

Reasons to Not Use a Microcontroller:

No wiring up a microcontroller,

No code needs to be written and downloaded

Don't have to worry about program crashes

Sometimes, it's a simpler design

Reasons To Use a Microcontroller

Usually simplifies the hardware design

Really frees up what you can do

Makes revions as simple as downloading a new program

This Lecture:

Topics:

Hardware: How to wire up a PIC chip so that you can make a light blink

Downloading: How to get your code onto the PIC chip, and

Coding: How to write simple C routines to make a light blink

i.e. How to make a light blink.

Only engineers get excited when a light blinks.

It's a big deal.

You were able to compile your code

You were able to download your code, and

Your code is running.

Once you get a light to blink, the rest is easy (sort of)...

Hardware:
Only PIC18F2620 allowed in Senior Design I

We have a boot-loader for this chip

same as ECE 376

Students have experience using this chip

same as ECE 376

The C compiler is free

I like free

Coding is identical to that used ECE 376

28 I/O Pins

Arranged into three ports

PORTA

PORTB

PORTC

MCLR

RA0

RA1

RA2

RA3

RA4

RA5

GND

OSC1

OSC2

RC0

RC1

RC2

RC3

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

+5V

GND

RC7/RX

RC6/TX

RC5

RC4

PORTA

PORTC

PORTB

PIC18F2620

Schematic for Minimum Connections:

Power & Ground

20MHz crystal

Reset button

FTDI

download programs

RB0 = Input

0V: button not pressed

5V: button pressed

RC0 = Output

0: LED is off

1: LED is on

+5V
+5V +5V

10k

Reset

20MHz

MCLR

OSC1

OSC2

Vdd

Vss

RC0

RC7/RX

RC6/TX

TX

RX

FTDI

FTDI

(alt)

LED

1k

1k
20

1

9

10

18

17

14

8, 19

6

10

14

9

+5V

TX

RX

5V

GND

+5V

Button

RB0
21

10k

217

318

RC6/TX

RC7/RX

Minimum Connections on a Breadboard

LEDs added to PORTC

C Coding with MPLAB8
much easier to use than MPLABX

Step 1: Start with a working program.

Download sample code from Bison Academy

Place in a directory where you can find it

z:\ECE401\Clock

Step 2: Start MPLAB.

Go to the program wizard

Select your device:

PIC18F2620 (or 4620)

Select the Hi-Tech C Universal

Toolsuite.

Change the path to where the files are

located

Select the C program you want to compile

(usually the name of the directory)

Select View Project

You should get the following screen:

* important * Offset your code by 0x800

Your code needs to start at 0x800 - after the boot-loader.

Go to Project - Build Options - Project

Under Linker, offset the code by 0x800

if your code compiled yesterday but fails today, you probably don't have the

0x800 offset.

Compile your code

Project Build All (or F10)

You should get the following message
Memory Summary:

Program space used 76h (118) of 10000h bytes (0.2%)

Data space used 3h (3) of F80h bytes (0.1%)

EEPROM space used 0h (0) of 400h bytes (0.0%)

ID Location space used 0h (0) of 8h nibbles (0.0%)

Configuration bits used 0h (0) of 7h words (0.0%)

This tells you your code compiled and uses up 118 bytes (out of 64k), 3

bytes of RAM (out of 4k), etc.

This also creates some files

Clock.lst

This shows how your C code converts to assembler. A section looks like the

following

Clock.hex

This is the machine code you download to your processor
:04000000C7EF7FF0D7
:10FF8E00000E926E000E936E000E946E000E956E25
:10FF9E00000E966E0001FF6F0F0EC16E0001FF5135
:10FFAE00000E806E000E816E000E826E000E836E4D
:10FFBE00000E846E000E00010001FD6F000E0001A8
:10FFCE00FE6F010E00010001FD2500010001FD6F15
:10FFDE00000E00010001FE210001FE6FFDC083FF37
:10FFEE00836601D001D002D08228826EEAD700EF5C
:02FFFE0000F011
:00000001FF

Note that the reason we like C so much is

It compiles to assembler fairly directly

Meaning it is efficient, and

C has things like multiply, divide, loops, arrays.

C-Coding
For Senior Design I, the programs don't need to be that complicated

All you need for this course are

Counters

if-statements

while-loops

subroutines

Input & Output Pins

Each I/O pin on a PIC can be either input or output

Input: Read the buttons or other devices.

5V = logic 1

0V = logic 0

Output: Drive something like an LED

Logic 1 = 5V

Logic 0 = 0V

Note: The maximum current for output pins is 25mA

Initializing I/O Pins

TRISx register determines which pins are input & output

TRISA controls PORTA

TRISB controls PORTB

TRISC controls PORTC

Each bit of TRISx sets the status or PORTx

TRISA = 0x00 all pins of PORTA are output (0 means output)

TRISB = 0xFF all pins of PORTB are input (1 means input)

TRISC = 0x0F bits 4..7 are output, bits 0..3 are input

Writing to Output Pins

You can write to all eight bits at once
PORTA = 0x00; all pins on PORTA are 0V

PORTB = 0xFF; all pins on PORTB are 5V

PORTC = 0x01; pin #0 is 5V, the rest are 0V

You can also address each bit separately
RA0 = 1; Port A bit #0 is 5V, other pins are unchanged

RB3 = 0; Port B bit #3 is 0V

RC7 = 1; Port C bit #7 is 5V

Note: when initializing the I/O ports, you need to include the code
ADCON1 = 0x0F;

For more details on this, please refer to ECE 376 on analog inputs and outputs.

Sample Code: Write 1, 2, 3 to Port A, B, C

defines PORTx, TRISx

start of the program

set all pins to output

write 1, 2, 3 to PORTA, B, C

stop (infinite looop)

#include <pic18.h>

void main(void)
{

 TRISA = 0;
 TRISB = 0;
 TRISC = 0;
 ADCON1 = 0x0F;

 PORTA = 1;
 PORTB = 2;
 PORTC = 3;

 while(1);

}

Compilation Results:
Memory Summary:

 Program space used 2Eh (46) of 10000h bytes (0.1%)

 Data space used 1h (1) of F80h bytes (0.0%)

 EEPROM space used 0h (0) of 400h bytes (0.0%)

 ID Location space used 0h (0) of 8h nibbles (0.0%)

 Configuration bits used 0h (0) of 7h words (0.0%)

This C code compiles into 23 lines of assembler (46 bytes: each instruction

is two bytes)

Note:

The while(1); statement at the end is a stop command.

If you remove it, the program ends

When that happens, it restart at address 0x0000

Program #2: Make RC0 blink at 220Hz

define a 16-bit variable, i

All pins are output

start with PORTC cleared

infinite loop

 toggle PORTC pin 0

 wait 1419 counts (220Hz)

#include <pic18.h>

void main(void)
{
 unsigned int i;

 TRISA = 0;
 TRISB = 0;
 TRISC = 0;
 ADCON1 = 0x0F;
 PORTC = 0;

 while(1) {
 RC0 = !RC0;
 for(i=0; i<1419; i++);
 }
 }

note: 1419 is found using trial an error

 larger numbers take longer to execute (lower frequency)

 use trial and error to get the frequency to 220Hz

Checking the Frequency on RC0

Use an osilloscope

Use a frequency counter on a multimeter

Adjust the number 1419 until you get 220Hz

Program #3: Subroutines and Wait loops

Subroutines can make progrms easier to write and use

Example: Write a subroutine which waits X ms

Use a for-loop to kill time

Adjust the count so that Wait(1000) waits 1000ms

void Wait(unsigned int X)

{

 unsigned int i, j;

 for (i=0; i<X; i++)

 for (j=0; j<617; j++);

 }

Write a program which

Counts in binary

One count per second

Note:

It's now very easy to change the wait

time

// Subroutine Declarations

#include <pic18.h>

// Subroutines

void Wait(unsigned int X)

{

 unsigned int i, j;

 for (i=0; i<X; i++)

 for (j=0; j<617; j++);

 }

// Main Routine

void main(void)

{

 TRISA = 0;

 TRISB = 0;

 TRISC = 0;

 ADCON1 = 0x0F;

 PORTC = 0;

 while(1) {

 PORTC += 1;

 Wait(1000);

 }
 }

Program #4: Counter

Beep every time button RB0 is pressed and released

After 10 button presses, turn on the light on RC0 for one second

Again, use subroutines
void Wait(unsigned int X)
{
 unsigned int i, j;
 for (i=0; i<X; i++)
 for (j=0; j<617; j++);
 }

void Beep(void)
{
 unsigned int i, j;
 for (i=0; i<50; i++) {
 RA1 = !RA1;
 for (j=0; j<200; j++);
 }
 }

// Main Routine

void main(void)

{

 unsigned int COUNT;

 TRISA = 0;

 TRISB = 0xFF;

 TRISC = 0;

 ADCON1 = 0x0F;

 COUNT = 0;

 while(1) {

 while(RB7);

 while(!RB7);

 Beep();

 COUNT += 1;

 PORTC = COUNT;

 if (COUNT >= 10) {

 RA0 = 1;

 Wait(1000);

 RA0 = 0;

 COUNT = 0;

 PORTC = COUNT;

 }

 }

 }

PORTA = output

PORTB = input

PORTC = output

infinite loop

wait until you detect a rising edge on

PortB bit #7

when found, beep

increment a count

send the cout to PORTC

after 10 counts

 turn on RA0

 for 1000ms

 turn RA0 off

 then clear the counter

Counting rising edges on RB7

C Language Summary

Character Definitions:
Name bits range

char 8 -128 to +127

unsigned char 8 0 to 255

int 16 -32,768 to +32,767

unsigned int 16 0 to 65,535

long 32 -2,147,583,648 to +2,147,483,647

unsigned long 32 0 to 4,294,967,295

float 32 3.4e-38 to 3.4e38

double 64 1.7e-308 to 1.7e+308

long double 80 3.4e-4932 to 3.4e+4932

Arithmetic Operations
Name Example Operation

+ 1 + 2 = 3 addition

- 3 - 2 = 1 subtraction

* 2 * 3 = 6 multiplication

/ 6 / 3 = 2 division

% 5 % 2 = 1 modulus

++ A++ use then increment

++A increment then use

-- A-- use then decrement

--A decrement then use

& 14 & 7 = 6 logical AND

| 14 | 7 = 15 logical OR

^ 14 ^ 7 = 9 logical XOR

>> 14 >> 2 = 3 shift right. Shift in zeros from left.

<< 14 << 2 = 56 shift left. Shift zeros in from right.

Defining Variables:
int A; A is an integer

int A = 3; A in an integer initialized to 3.

int A, B, C; A, B, and C are integers

int A=B=C=1; A, B, and C are integers, each initialized to 1.

int A[5] = {1,2,3,4,5}; A is an array initialized to 1..5. Note: A[0]=1.

Arrays:
int R[52]; Save space for 52 integers

int T[2][52]; Save space for two arrays of 52 integers.

note: The PIC18F2626 only has 3692 bytes of RAM, so don't get carried

away with arrays.

General C Commands:

Conditional Expressions:
! not. !PORTB means the compliment of PORTB.
= assignment
== test if equal.
> greater than
< less than
>= greater than or equal
!= not equal

IF Statement
if (condition expression)
{ statement or group of statements
 }

example: if PortB pin 0 is 1, then increment port C:
if (RB0==1) {
 PORTC += 1;
 }

IF - ELSE Statements
if (condition expression)
{ statement or group of statements
 }
else {
 alternate statement or group of statements
 }

Example: if PortB bit 0 is 1, then increment port C, else decrement port C:
if (RB0==1)
 PORTC += 1;
 }
else
 PORTC -= 1;
 }

SWITCH (CASE)
switch(value)
{
 case value: statement or group of statements
 case value: statement or group of statements
 defacult: statement or group of statements
 }

WHILE LOOP
while (condition is true) {
 statement or group of statements
 }

DO LOOP
do {
 statement or group of statements
 } while (condition is true);

FOR-NEXT
for (starting value; do while true; changes) {
 statement or group of statements
 }

Infinite Loop
while(1) {
 statement or group of statements
 }

note: Zero is false. Anything other than zeros is true. while(130) also

works for an infinite loop.

Subroutines in C:

To define a subroutine, you need to

Declare how this subroutine is called (typically in a .h file)

Declare what the subroutine is.

The format is

returned_variable_type = subroutine_name(passed_variable_types).

Example: Write a subroutine which returns the square of a number:
// Subroutine Declarations

int Square(int Data);

// Subroutines

int Square(int Data) {
 int Result;
 Result = Data * Data;
 return(Result);
 }

Standard C Code Structure

So that others can modify your code more easily, a standard structure is to

be used. This places all code in the following order:

//----------------------------------
// Program Name
//
// Author
// Date
// Description
// Revision History
//---------------------------------

// Global Variables

// Subroutine Declarations

#include <pic.h> // where PORTB etc. is defined

// Subroutines

// Main Routine

void main(void)
{

 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0;
 ADCON1 = 15;
 PORTA = 1;
 PORTC = 3;

 while(1) {
 PORTC = PORTB;
 };
 }

I/O Pin Names

C is case sensitive

C is spelling sensitive

The names of the I/O registers (8 bits) and individual bits are as follows

PORTA, B, C are connected to I/O pins on the PIC18F2620

PORTD & E are not

Address Register
Name

Bit

7 6 5 4 3 2 1 0

0xF80 PORTA - - RA5 RA4 RA3 RA2 RA1 RA0

0xF81 PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

0xF82 PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0

0xF83 PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0

0xF84 PORTE - - - - RE3 RE2 RE1 RE0

0xF92 TRISA - - TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0

0xF93 TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0

0xF94 TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0

0xF95 TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0

0xF96 TRISE - - - - TRISE3 TRISE2 TRISE1 TRISE0

