
ECE 461/661 - Test #3:  Name __________________
Digital Control & Frequemncy Domain techniques - Fall 2020

Root Locus in the z-Plane

1)  Assume a unity feedback system

G(z) = 


0.04z

(z−0.9)(z−0.8)



Determine a gain compesator, K(z) = k, which results in

10% overshoot for a step input .  Specify(ζ = 0.5910)

The resulting gain, k

The closed-loop dominant pole(s)

The resulting 2% settling time (in terms of samples), and

The error constant, Kp

Step 1:  Draw the root locus plot along with the 0.5910 damping line in the z-plane:

G = zpk(0,[0.9,0.8],0.04);

k = logspace(-2,2,1000)';

rlocus(G,k);

hold on 

s = (-1 + j*1.36492) * [0:0.01:10]';

T = 1;

z = exp(s*T);

plot(real(z),imag(z),'r');

 

G(z)k
YR



Find the point which intersects the damping line:

z = 0.8273 + j0.1886

At any point on the root locus, GK = -1




0.04z

(z−0.9)(z−0.8)



z=0.8273+j0.1886

= 0.8812∠1800

meaning

k = 1

0.8812
= 1.1349

Answers:

Resulting Gain, k:

k = 1.1349

Closed-Loop Dominant Poles:

z = 0.8273 + j0.1886  (and its complex conjugate)

2% Settling Time:

24 samples

z = 0.8485∠12.8450

(0.8485)k = 0.02

k = 23.81

Kp = 0.2270




0.04z

(z−0.9)(z−0.8)



z=1

= 2.00

Kp = (G ⋅ k)s=0 = 2k = 2.2697



Compensator Design in the z-Plane

2)  Assume a unity feedback system with a

sampling rate of T = 0.1 second

G(s) = 


10

(s+2)(s+10)



Design a digital compensator, K(z), which

results in

No error for a step input

10% overshoot , and(ζ = 0.5910)

A 2% settling time of 2 seconds

The closed-loop dominant pole is

s = −2 + j2.7299

z = 0.7884 + j0.2207

Pick K(z) to

Cancel the poles at s = -2 and s = -10

Add a pole at s = 0, and

Add a pole to place these points on the root locus (angle adds up to 180 degrees)

K(z) = k
(z−0.8187)(z−0.3679)

(z−1)(z−a)



To find 'a', evaluate what we know

G(s) ⋅ K(z) ⋅ ZOH = −1






10

(s+2)(s+10)





(z−0.8187)(z−0.3679)

(z−1)(z−a)

 (e−sT/2)

s=−2+j2.7299

= 0.1657∠ − 124.940

∠(z − a) = 55.05960

a = 0.7884 − 0.2207

tan 55.05960 


= 0.6342

meaning

K(z) = k
(z−0.8187)(z−0.3679)

(z−1)(z−0.6342)



To find k






10

(s+2)(s+10)





(z−0.8187)(z−0.3679)

(z−1)(z−a)

 (e−sT/2)

s=−2+j2.7299

= 0.6155∠1800

k = 1

0.6155
= 1.6246

K(z) = 1.6246
(z−0.8187)(z−0.3679)

(z−1)(z−0.6342)



G(s)k
R Y

.



Nichols Charts

3) Assume a unity feedback system with

G(s) = 


10

s(s+2)(s+10)



Determine a gain compensator, K(s) = k, which

results in a resonance of Mm = 1.3 (2.279dB).

Plot the resulting Nichols chart for the G(s) * k

>> G = zpk([],[0,-2,-10],10);

>> w = logspace(-2,2,1000)';

>> s = j*w;

>> Gw = Bode2(G,w);

>> Nichols2(G2,1.3);

??? Undefined function or variable 'G2'.

 

>> Nichols2(Gw,1.3);

>> Nichols2(Gw*[1,3],1.3);

>> Nichols2(Gw*[1,4],1.3);

>> Nichols2(Gw*[1,3.6],1.3);

>> Nichols2(Gw*[1,3.7],1.3);

>> 

answer:  k = 3.70

G(s)K(s)
R Y

.



Compensator Design in the Frequency Domain

4)  Assume a unity feedback system with

G(s) = 


10

s(s+2)(s+10)



Determine a compensator, K(s), which results in

No error for a step input (closed-loop gain at DC = 1.000)

A 60 degree phase margin, and

A 0dB gain frequency of 2 rad/sec

Assume K(s) is in the form of

K(s) = k
s+2

s+a



For a 60 degree phase margin at 2 rad/sec

GK(j2) = 




10

s(s+2)(s+10)





k(s+2)

s+a





s=j2

= 1∠ − 1200

Evaluating what we know






10

s(s+2)(s+10)





s+2

1





s=j2

= 0.4903∠ − 101.30990

For the phase to add up to -120 degrees

∠(s + a) = 18.69010

a = 2

tan 18.69010 


= 5.9121

Going back to GK






10

s(s+2)(s+10)





s+2

s+5.9121





s=j2

= 0.0786∠ − 1200

meaning

k = 1

0.0786
= 12.7297

and

K(s) = 12.7297
s+2

s+5.9121



Other answers work:

G(j0.9214) = 0.4909∠ − 1200

The zero can be 1..3 x 0.9214 rad/sec



 


