
Homework #10:  ECE 461/661
Digital PID Control.    Due Monday, November 16th

I Control

Assume T = 0.5 seconds:

G(s) = 


1.4427

(s+0.1617)(s+1.04)(s+2.719)(s+5.05)




1) Design a digital I controller

K(s) = k
z

z−1



that results in 20% overshoot in the step response.

Simulate the step response of the closed-loop system (VisSim or Simulink preferred with K(z)*G(s))

Option #1:  Design in the z-domain.  Convert G(s) to G(z)

T = 0.5;
s = [-0.1617, -1.04, -2.719, -5.05]
Gz = zpk([0,0],exp(s*T),1, T);
Gs = zpk([],s,1.4427);
k = evalfr(Gs,0) / evalfr(Gz,1)
     k = 0.0135
Gz = zpk([0,0],exp(s*T),k, T);
zpk(Gz)
 
                 0.0135 z^2
--------------------------------------------
(z-0.9223) (z-0.5945) (z-0.2568) (z-0.08006)
 
Sampling time (seconds): 0.5 

G(z) ≈ 


0.0135z2

(z−0.9223)(z−0.5945)(z−0.2568)(z−0.0801)




Add K(z)

GK = 


0.0135z3

(z−1)(z−0.9223)(z−0.5945)(z−0.2568)(z−0.0801)




Draw the root locus along with the damping line

k = logspace(-2,2,1000)';
rlocus(GzKz,k);
hold on;
s = (-1 + j*2) * [0:0.01:10]';
z = exp(s*T);
plot(real(z),imag(z),'r');



Result:  z = 0.9667 + j0.0616

Option #2:  Numerical Solution. 

The plant + compensator + sample & hold  is

G ⋅ K ⋅ H = 


1.4427

(s+0.1617)(s+1.04)(s+2.719)(s+5.05)


 ⋅ 

kz

z−1

 ⋅ (e−sT/2)

Search along the damping line until the angles add up to 180 degrees

Kz = zpk(0,1,1,T);
T = 0.5;
s = -0.1 + j*0.2;
z = exp(s*T);
evalfr(Gs,s) * evalfr(Kz,z) * exp(-s*T/2)

  -4.3508 + 2.3219i

s = 0.9*s;
z = exp(s*T);
evalfr(Gs,s) * evalfr(Kz,z) * exp(-s*T/2)

  -5.4439 + 2.1500i

time passes....

s = 1.0001*s;
z = exp(s*T);
evalfr(Gs,s) * evalfr(Kz,z) * exp(-s*T/2)

  -9.7937 - 0.0001i

s =  -0.0630 + 0.1260i
z =   0.9671 + 0.0610i



K(z) is then

evalfr(Gs,s) * evalfr(Kz,z) * exp(-s*T/2)

ans =  -9.7937 - 0.0001i

k = 1 / abs(ans)

k =    0.1021

Kz = zpk(0,1,k, T)
 
0.1021 z
--------
 (z-1)
 
Sampling time (seconds): 0.5
 

Checking with VisSim



PI Control

2) Design a digital PI controller that results in 20% overshoot in the step response.

Use option #2 (numerical method).  Choose the zero to cancel the pole at s = -0.1617

z = esT = 0.922

K(z) = k
z−0.922

z−1



Search along the dampin line until the angles add up to 180 degrees

G(s) ⋅ K(z) ⋅ H(s) = 1∠1800






1.4427

(s+0.1617)(s+1.04)(s+2.719)(s+5.05)


 ⋅ 

k(z−0.922)

z−1

 ⋅ (e−sT/2)




s

= 1∠1800

itterating results in

s = −0.2776 + j0.5553

z = 0.8371 + j0.2386






1.4427

(s+0.1617)(s+1.04)(s+2.719)(s+5.05)


 ⋅ 

k(z−0.922)

z−1

 ⋅ (e−sT/2)




s

= 0.2016∠1800

k =
1

0.2016
= 4.7478

and

K(z) = 4.7478
z−0.922

z−1







PID Control

3) Design a digital PID controller that results in 20% overshoot in the step response.

Let K(z) cancel the poles at s = -0.1617 and s = -1.04

K(z) = k
(z−0.922)(z−0.5945)

z(z−1)




The plant + compensator + sample and hold is now

G(s) ⋅ K(z) ⋅ H(s) = 1∠1800






1.4427

(s+0.1617)(s+1.04)(s+2.719)(s+5.05)


 ⋅ 

k(z−0.922)(z−0.5945)

z(z−1)


 ⋅ (e−sT/2)




s

= −1

Search along the damping line until the angles add up to 180 degrees

s = −0.4922 + j0.9843

z = 0.6891 + j0.3695

resulting in

   





1.4427

(s+0.1617)(s+1.04)(s+2.719)(s+5.05)


 ⋅ 

k(z−0.922)(z−0.5945)

z(z−1)


 ⋅ (e−sT/2)




s

= 0.0542∠1800

k is then

k =
1

0.0542
= 18.4478

K(z) = 18.4478
(z−0.922)(z−0.5945)

z(z−1)








Meeting Design Specs

4) Design a digital controller with T = 0.5 seconds that results in

No error for a step input

20% overshoot for the step response, and

A 2% settling time of 10 seconds

Simulate the step response of the closed-loop system (VisSim or Simulink preferred with K(z)*G(s))

Translation

Make the system type 1

Place the closed-loop dominant pole at s = -0.4 + j0.8

Place the closed-loop dominant pole at z = 0.7541 + j0.3188

Let

K(z) = k
(z−0.922)(z−0.5945)

(z−1)(z−a)




Evaluate what we know






1.4427

(s+0.1617)(s+1.04)(s+2.719)(s+5.05)


 ⋅ 

(z−0.922)(z−0.5945)

(z−1)


 ⋅ (e−sT/2)




s

= 0.0514∠ − 144.640

The pole at z = a must contribute the remainder ( -35.3567 degrees )

∠(z − a) = 35.35670

a = 0.7571 −
0.3188

tan 35.35670 


= 0.3078

and

K(z) = k
(z−0.922)(z−0.5945)

(z−1)(z−0.3078)




Evaluating at the design point (s and z):






1.4427

(s+0.1617)(s+1.04)(s+2.719)(s+5.05)


 ⋅ 

(z−0.922)(z−0.5945)

(z−1)(z−0.3078)


 ⋅ (e−sT/2)




s

   = 0.0937∠1800

meaning

k =
1

0.0937
= 10.671



K(z) = 10.67
(z−0.922)(z−0.5945)

(z−1)(z−0.3078)






5) Design a digital controller with T = 0.1 second that results in

No error for a step input

20% overshoot for the step response, and

A 2% settling time of 4 seconds

Simulate the step response of the closed-loop system (VisSim or Simulink preferred with K(z)*G(s))

Translation

Make the system type 1

Place the closed-loop dominant pole at s = -0.4 + j0.8

Place the closed-loop dominant pole at z = 0.9577 + j0.0768

Let

K(s) = k
(s+0.1617)(s+1.04)

s(s+b)




K(z) = k
(z−0.9940)(z−0.9012)

(z−1)(z−a)




Evaluate what we know






1.4427

(s+0.1617)(s+1.04)(s+2.719)(s+5.05)


 ⋅ 

(z−0.9940)(z−0.9012)

(z−1)


 ⋅ (e−sT/2)




s

= 0.137∠ − 138.920

The pole at (z = a) must subtract 41.08 degrees to bring this to 180 degrees

∠(z + a) = 41.080

a = 0.9577 −
0.0768

tan 41.080 


= 0.8696

so now

K(z) = k
(z−0.9940)(z−0.9012)

(z−1)(z−0.8696)




Evaluate what we now know






1.4427

(s+0.1617)(s+1.04)(s+2.719)(s+5.05)


 ⋅ 

(z−0.9940)(z−0.9012)

(z−1)(z−0.8696)


 ⋅ (e−sT/2)




s

= 0.1175∠1800

k is then

k =
1

0.1175
= 8.5096



K(z) = 8.5096
(z−0.9940)(z−0.9012)

(z−1)(z−0.8696)




Note:  If you change the sampling rate, it's a complete re-design.


