
Homework #4:  ECE 461 / 661
1st and 2nd Order Approximations.  Due Monday, September 11th 

LaPlace Transforms

1) Assume X and Y are related by the following transfer function

 Y = 


2s+20

(s+1)(s+3)(s+10)

X

a)  What is the differential equation relating X and Y?

Cross multiply and multiply out

((s + 1)(s + 3)(s + 10))Y = (2s + 20)X

(s3 + 14s2 + 43s + 30)Y = (2s + 20)X

Note that 'sY' means 'the derivative of y'

y + 14y + 43y + 30y = 2x + 20x

b)  Determine y(t) assuming

x(t) = 4 cos(3t) + 2 sin(3t)

Use phasor analysis

s = j3

X = 4 − j2

Y = 


2s+20

(s+1)(s+3)(s+10)

X

Y = 


2s+20

(s+1)(s+3)(s+10)



s=j3

⋅ (4 − j2)

In Matlab

>> s = j*3;
>> Y = (2*s+20)/( (s+1)*(s+3)*(s+10) ) * (4-j*2)

Y =  -0.5333 - 0.4000i

or another way to do it in Matlab:

>> G = zpk(-10,[-1,-3,-10],2)
 
     2 (s+10)
------------------
(s+1) (s+3) (s+10)
 



>> Y = evalfr(G, j*3) * (4 - j*2)

Y =   -0.5333 - 0.4000i

meaning

y(t) = −0.5333 cos(3t) + 0.4000 sin(3t)

c)  Determine y(t) assuming x(t) is a unit step input

In this case, use LaPlace transforms since x(t) = 0 for t<0

Y = 


2s+20

(s+1)(s+3)(s+10)

X

Y = 


2s+20

(s+1)(s+3)(s+10)





1
s



Use partial fractions

Y = 


0.667
s

 + 

−1

s+1

 + 

0.333

s+3

 + 

0

s+10



Take the inverse LaPlace transform

y(t) = (0.667 − e−t + 0.333e−3t + 0e−10t)u(t)

Note:  Matlab can do partial fractions

>> G = zpk(-10,[-1,-3,-10,0],2)
 
      2 (s+10)
--------------------
s (s+1) (s+3) (s+10)
 
>> s = 0 + 1e-9;
>> evalfr(G,s) * (s + 0)

ans =    0.6667

>> s = -1 + 1e-9;
>> evalfr(G,s) * (s + 1)

ans =   -1.0000

>> s = -3 + 1e-9;
>> evalfr(G,s) * (s + 3)

ans =    0.3333

>> s = -10 + 1e-9;
>> evalfr(G,s) * (s + 10)

ans = -3.1746e-012
 



2)  Assume X and Y are related by the following transfer function:

Y = 


3000

(s+3+j7)(s+3−j7)(s+30)

X

a) Use 2nd-order approximations to determine

The 2% settling time

The percent overshoot for a step input

The steady-state output for a step input (x(t) = u(t))

Keep the dominant pole (s = -3 +/- j7)

From the 2nd-order approximations

s = −3 + j7

Ts = 4

−real(s)
= 4

3

θ = arctan 
7

3

 = 66.800

ζ = cos θ = 0.3939

OS = exp





−πζ

1−ζ2




 = 26.02%

DC gain=
3000

(s+3+j7)(s+3−j7)(s+30)



s=0

= 1.7241

b) Check your answers using the 3rd order model and Matlab, Simulink, of VisSim (your pick)

Using Matlab:

>> G = zpk([],[-3-j*7,-3+j*7,-30],3000)
 
         3000
----------------------
(s+30) (s^2 + 6s + 58)
 
>> DC = evalfr(G,0)

DC =    1.7241

>> t = [0:0.001:2]';
>> y = step(G,t);
>> OS = max(y) / DC

OS =    1.2510

>> plot(t,y,t,0*t+DC,'m--',t,0*t+1.2602*DC,'m--')



Step Response along with the DC gain & 1.26 * DC Gain



3)  Determine the transfer function for a system with the following step response:
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There is no oscillation, so this looks like a 1st-order system

G(s) = 


a

s+b




The DC gain is 1.42




a

s+b




s=0

= 


a

b


 = 1.42

The 2% settling time is abot 1.5 secods (ish)




4

b


 = 1.5

b = 


4

1.5

 = 2.67

a = 1.42b = 3.78

so

G(s) ≈ 


3.78

s+2.67





4)  Determine the transfer function for a system with the following step response:
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This does have oscillations, meaning the dominant poles are complex

G(s) = 


a

(s+b+jc)(s+b−jc)



The DC gain is 2.9

G(s = 0) = 


a

(s+b+jc)(s+b−jc)



s=0

= 2.9

The frequency of oscillation is

c = ωd ≈ 


4 cycles

1.9 sec

 2π = 13.23

The 2% settling time is about 2.5 seconds

b = σ ≈ 4

2.5
= 1.6

so

G(s) = 


a

(s+1.6+j13.23)(s+1.6−j13.23)



Pick 'a' to make the DC gain 2.9

G(s) = 


515.02

(s+1.6+j13.23)(s+1.6−j13.23)




