
ECE 463/663 - Homework #9
Calculus of Variations. LQG Control. Due Wednesday, April 3rd

Please submit as a hard copy, email to jacob.glower@ndsu.edu, or submit on BlackBoard

Soap Film

1) Calculate the shape of a soap film connecting two rings around the X axis:

Y(0) = 7

Y(4) = 10

From the lecture notes, a soap film minimizes the surface area. The corresponding funtional is

J = ∫ y 1 + y
.
2 
 dx

which has the solution

y = a ⋅ cosh 
x−b
a



Plugging in the two endpoints to solve for a and b

7 = a ⋅ cosh 
−b
a



10 = a ⋅ cosh 
4−b
a



Solving in Matlab, first create a cost function

function [J] = soap(z)

 a = z(1);

 b = z(2);

 e1 = a*cosh(-b/a) - 7;

 e2 = a*cosh((4-b)/a) - 10;

 J = e1^2 + e2^2;

 end

Solve using fminsearch:

>> [z,e] = fminsearch('soap',[1,2])
 a b
z = 0.6017 1.8924
e = 4.4168e-007

meaning

y = 0.6017 ⋅ cosh 
x−1.8924

0.6017




2) Calculate the shape of a soap film connecting two rings around the X axis:

Y(0) = 7

Y(2) = free

From the lecture notes,

y = a ⋅ cosh 
x−b
a



The endpoint constraint is

7 = a ⋅ cosh 
−b
a



The right endpoint constraint is

y = −sinh 
2−b
a

 = 0

Setting up a cost funiton in Matlab

function [J] = soap(z)
 a = z(1);
 b = z(2);
 e1 = a*cosh(-b/a) - 7;
 e2 = sinh((2-b)/a);
 J = e1^2 + e2^2;
 end

Solving

>> [z,e] = fminsearch('soap',[1,2])

 a b
z = 0.6529 2.0000
e = 6.7418e-009

so

>> a = z(1);
>> b = z(2);
>> y = a * cosh((x-b)/a);
>> plot(x,y);
>> plot(x,y,[2,2],[0,10],'r--');

Hanging Chain

3) Calculate the shape of a hanging chain subject to the following constraints

Length of chain = 13 meters

Left Endpoint: (0,7)

Right Endpoint: (10,5)

From the lecture notes, a hanging chain

Minimizes the potential energy,

With the constraint that the total lenngth is 12 meters

The corresponding funcitonal is

F = x 1 + y
.
2 + M 1 + y

.
2

which results in the solution

y = a ⋅ cosh 
x−b
a

 − M


a ⋅ sinh 

x−b
a




0

10

= 13

Set up a cost function

function J = chain(z)
a = z(1);
b = z(2);
M = z(3);

Length = 13;
x1 = 0;
y1 = 7;

x2 = 10;
y2 = 5;

e1 = a*cosh((x1-b)/a) - M - y1;
e2 = a*cosh((x2-b)/a) - M - y2;
e3 = a*sinh((x2-b)/a) - a*sinh((x1-b)/a) - Length;

J = e1^2 + e2^2 + e3^2;

end

Solving

>> [z,e] = fminsearch('chain',[1,2,3])

 a b M
z = 3.9805 5.6173 1.6471

e = 4.8029e-009

plotting the shape

>> a = z(1);
>> b = z(2);
>> M = z(3);
>> x = [0:0.01:10]';
>> y = a*cosh((x-b)/a) - M;
>> plot(x,y);
>> ylim([0,10])

Ricatti Equation

4) Find the function, x(t), which minimizes the following funcional

J = ∫0
10

(2x2 + 5x
.
2
)dt

x(0) = 6

x(10) = 7

Any funciton that minimizes this functional must minimize the Euler LaGrange equation

Fx −
d

dt
(Fx) = 0

Solving

(4x) −
d

dt
(10x

.
) = 0

10ẍ − 4x = 0

(10s2 − 4)X = 0

Either

x = 0, or

s = {+0.6325, -0.0.6325}

going with the latter solution

x(t) = ae0.6325t + be−0.6325t

Plugging in the endpoint constraints

6 = a + b

7 = 558.35a + 0.0018b

Solving 2 equations for 2 unknowns

>> A = [1,1 ; exp(5),exp(-5)]

 1.0000 1.0000
 148.4132 0.0067

>> B = [6;4]

 6
 4

>> ab = inv(A)*B

a 0.0267
b 5.9733

Plotting the optimal path

>> t = [0:0.01:10]';
>> x = a*exp(0.6325*t) + b*exp(-0.6325*t);
>> plot(t,x)
>> xlabel('seconds');
>> ylabel('x')
>> title('Optimal Path');

5) Find the function, x(t), which minimizes the following funcional

J = ∫0
10

(2x2 + 5u2
)dt

x
.

= −0.2x + u

x(0) = 6

x(10) = 7

The functional for this problem (including a LaGrange multiplier) is

F = (2x2 + 5u2
) + m(x

.
+ 0.2x − u)

Solving three Euler LaGrange equations

Fx −
d

dt
(Fx) = 0

(4x + 0.2m) −
d

dt
(m) = 0

(1) 4x + 0.2m − m
.

= 0

Fu −
d

dt
(Fu) = 0

(2) 10u − m = 0

Fm −
d

dt
(Fm) = 0

(3) x
.

+ 0.2x − u = 0

Substituting

m = 10u

4x + 2u − 10u
.

= 0

u = x
.

+ 0.2x

u
.

= ẍ + 0.2x
.

4x + 2(x
.

+ 0.2x) − 10(ẍ + 0.2x
.
) = 0

Simplifying

−10ẍ + 4.4x = 0

(−10s2 + 4.4)x = 0

meaning

s = {0.6633, -0.6633}

and

x(t) = a ⋅ e0.6633t + b ⋅ e−0.6633t

Plugging in the endpoints

x(0) = 6 = a + b

x(10) = 7 = a ⋅ e6.633 + b ⋅ e−6.633

Solving

>> s = roots([-10,0,4.4])

 0.6633
 -0.6633

>> A = [1,1 ; exp(s(1)*10),exp(s(2)*10)]

 1.0000 1.0000
 759.9477 0.0013

>> B = [6;7];
>> ab = inv(A)*B

 0.0092
 5.9908

>> t = [0:0.01:10]';
>> a = ab(1);
>> b = ab(2);
>> x = a*exp(s(1)*t) + b*exp(s(2)*t);
>> plot(t,x);
>> xlabel('Time');

LQG Control

6) Cart & Pendulum (HW #4 & HW#6):

s















x

θ

x
.

θ
.














=















0 0 1 0

0 0 0 1

0 −29.4 0 0

0 26.133 0 0





























x

θ

x
.

θ
.














+















0

0

1

−0.667














F

Design a full-state feedback control law of the form

F = U = KrR − KxX

for the cart and pendulum system from homework #4 using LQG control so that

The DC gain is 1.00

The 2% settling time is 8 seconds, and

There is less than 5% overshoot for a step input.

>> t = [0:0.01:10]';
>> Gd = tf(0.52,[1,1,0.52])

>> A = [0,0,1,0;0,0,0,1;0,-29.4,0,0;0,26.133,0,0];
>> B = [0;0;1;-0.667];
>> C = [1,0,0,0];
>> D = 0;
>> Kx = lqr(A,B,diag([1,0,0,0]),1)

Kx = -1.0000 -91.2225 -3.2623 -21.2933

>> DC = -C*inv(A-B*Kx)*B;
>> Kr = 1/DC;
>> G = ss(A-B*Kx,B*Kr,C,D);
>> y = step(G,t);
>> plot(t,y,'b',t,yd,'r')

Desired step response (red) & actual step response (blue)

Adjust Q and R until the two are close

Increasing Q(1) speeds up the system (weighting on x)

Increasing Q(3) adds more friction (weighting on dx)

Kx = lqr(A,B,diag([10,0,2,0]),1);
DC = -C*inv(A-B*Kx)*B;
Kr = 1/DC;
G = ss(A-B*Kx,B*Kr,C,D);
y = step(G,t);
plot(t,y)
plot(t,y,'b',t,yd,'r')

The final results is

Kx = -3.1623 -105.7740 -6.7131 -27.5987
Kr = -3.1623

with closed-loop poles at (about the same as pole placement)

>> eig(A - B*Kx)

 -5.6551
 -4.6932
 -0.6735 + 0.5689i
 -0.6735 - 0.5689i

7) Ball and Beam (HW #4 & HW#6):

s















r

θ

r
.

θ
.














=















0 0 1 0

0 0 0 1

0 −7 0 0

−7.84 0 0 0





























r

θ

r
.

θ
.














+















0

0

0

0.4














T

Design a full-state feedback control law of the form

T = U = KrR − KxX

for the ball and beam system from homework #4 using LQG control so that

The DC gain is 1.00

The 2% settling time is 8 seconds, and

There is less than 5% overshoot for a step input.

Repeating problem #6 with a new {A,B} results in

Kx = lqr(A,B,diag([1,0,300,20000]),1);
DC = -C*inv(A-B*Kx)*B;
Kr = 1/DC;
G = ss(A-B*Kx,B*Kr,C,D);
y = step(G,t);
plot(t,y)
plot(t,y,'b',t,yd,'r')

Compare your results with homework #6

Where are the closed-loop poles with pole placement and with LQG control?

Are the feedback gains larger or smaller with LQG control?

Which one works better?

With LQR

Kx = -39.2255 300.0466 -44.5247 146.6296

Kr = -19.6255

>> eig(A-B*Kx)

 -56.5688
 -0.6143 + 0.8716i
 -0.6143 - 0.8716i
 -0.8544

With pole placement

>> Kx2 = ppl(A, B, [-0.5+j*0.52,-0.5-j*0.52,-3,-4])

Kx2 = -21.8303 48.8010 -5.5867 20.0000

>> DC = -C*inv(A-B*Kx2)*B;
>> Kr2 = 1/DC

Kr2 = -2.2303

Pole-Placement actually gave lower gains. If you allow the system to behave the way it wants (not

trying to slow it down)

Kx = lqr(A,B,diag([1,0,100,100]),1);
DC = -C*inv(A-B*Kx)*B;
Kr = 1/DC;
G = ss(A-B*Kx,B*Kr,C,D);
y = step(G,t);
plot(t,y)
plot(t,y,'b',t,yd,'r')

Kx = -39.2255 74.5176 -22.7561 21.7391

Kr = -19.6255

>> eig(A - B*Kx)

 -4.7164
 -1.1830 + 2.4131i
 -1.1830 - 2.4131i
 -1.6132

I can get a faster system using similar gains using LQR

