
ECE 463/663 - Homework #5
Full State Feedback.  Due Wednesday, February 21st

Please submit as a hard copy, email to jacob.glower@ndsu.edu, or submit on BlackBoard

1)  Write a Matlab m-file which is passed

The system dynamics (A, B), 

The desired pole locations (P)

and then returns the feedback gains, Kx, so that  roots(A - B Kx) = P

function [ Kx ] = ppl( A, B, P0)
 
N = length(A);
 
T1 = [];
for i=1:N
   T1 = [T1, (A^(i-1))*B];
end
 
 
P = poly(eig(A));
T2 = [];
for i=1:N
    T2 = [T2; zeros(1,i-1), P(1:N-i+1)];
end
 
T3 = zeros(N,N);
for i=1:N
    T3(i, N+1-i) = 1;
end
 
T = T1*T2*T3;
 
Pd = poly(P0);
 
dP = Pd - P;
 
Flip = [N+1:-1:2]';
Kz = dP(Flip);
Kx = Kz*inv(T);
 
end



Problems 2-4)  Assume the following dynamic system:
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2)  (20 points) Find the feedback control law of the form

U = KrR − KxX

so that

The DC gain is 1.000 and

The closed-loop poles are at {-2, -10, -11, -12, -13}

Plot 

The resulting closed-loop step reponse, and

The resulting input, U

Input {A, B, C, D}

>> A = [-6.1,3,0,0,0;3,-6.1,3,0,0;0,3,-6.1,3,0];
>> A = [A;0,0,3,-6.1,3;0,0,0,3,-3.1]

   -6.1000    3.0000         0         0         0
    3.0000   -6.1000    3.0000         0         0
         0    3.0000   -6.1000    3.0000         0
         0         0    3.0000   -6.1000    3.0000
         0         0         0    3.0000   -3.1000

>> B = [3;0;0;0;0]

     3
     0
     0
     0
     0

>> C = [0,0,0,0,1]

     0     0     0     0     1

Use the ppl() routine to find the feedback gains:

>> Kx = ppl(A,B,[-2,-10,-11,-12,-13])

Kx =     6.8333   20.1556   33.7952   36.5292   31.2093



Check:  Are the closed-loop poles correct?  (yes, they are)

>> eig(A - B*Kx)

  -13.0000
  -12.0000
  -11.0000
  -10.0000
   -2.0000

Find Kr to make the DC gain 1.0000

>> DC = -C*inv(A - B*Kx)*B

DC =    0.0071

>> Kr = 1/DC

Kr =  141.2346

Plot the step response of the closed-loop system:

>> t = [0:0.01:5]';
>> Gcl = ss(A-B*Kx, B*Kr, C, 0);
>> zpk(Gcl)
 
              34320
---------------------------------
(s+13) (s+12) (s+11) (s+10) (s+2)
 
>> y = step(Gcl,t);
>> plot(t,y)
>> xlabel('Time (seconds)');
>> 



Plotting the input (U)

>> Gu = ss(A-B*Kx, B*Kr, -Kx, Kr);
>> U = step(Gu, t);
>> plot(t,U)
>> xlabel('Time (seconds)');

Input, U(t)



3) (20 points)  Repeat problem #2 but find Kx and Kr so that 

The DC gain is 1.000 and

The closed-loop dominant pole is at s = -2 and the other four poles don't move (the are the same as

the fast four poles of the open-loop system (eigenvalues of A)

Plot 

The resulting closed-loop step reponse, and

The resulting input, U

First, determine where to place the closed-loop poles

>> P = eig(A)

  -11.1475
   -8.5925
   -5.2461
   -2.1708
   -0.3430

>> P(5) = -2

  -11.1475

   -8.5925

   -5.2461

   -2.1708

   -2.0000

Find the feedback gains to place the closed-loop poles there:

>> Kx = ppl(A,B,P)

Kx =    0.5523    1.0599    1.4816    1.7833    1.9405

>> DC = -C*inv(A - B*Kx)*B

DC =    0.1114

>> Kr = 1/DC

Kr =    8.9781

Note:  Kx and Kr are much smaller than before.  This should result in a similar response (same dominant

pole) but smaller inputs

Plotting the closed-loop step responses:

>> Gy = ss(A-B*Kx,B*Kr,C,0);
>> y = step(Gy,t);
>> Gu = ss(A-B*Kx,B*Kr,-Kx,Kr);
>> U = step(Gu,t);
>> plot(t,y)
>> xlabel('Time (seconds)');
>> plot(t,U)
>> xlabel('Time (seconds)');
>> 



Step response:  y(t)

Step Response: U(t)

Note:

y(t) is almost the same (same dominnat pole)

u(t) is about 10x smaller

Some pole locations are better than others...



4) (20 points)  Repeat problem #2 but find Kx and Kr so that 

The DC gain is 1.000

The  2% settling time is 2 seconds, and

There is 10% overshoot for a step input.

Plot 

The resulting closed-loop step reponse, and

The resulting input, U

For 10% overshoot...

ζ = 0.591

s = −2 + j2.73

This results in 6.9% overshoot (the three real poles reduce the overshoot).  Adjust the complex part until

you get 10% overshoot

>> P(5) = -2 + j*4;
>> P(4) = conj(P(5))

 -11.1475          
  -8.5925          
  -5.2461          
  -2.0000 - 4.0000i
  -2.0000 + 4.0000i

>> Kx = ppl(A,B,P)

Kx =    0.4954    2.7316    7.0792   12.1274   15.5292

>> DC = -C*inv(A - B*Kx)*B;
>> Kr = 1/DC

Kr =   41.3579

>> Gy = ss(A-B*Kx,B*Kr,C,0);
>> y = step(Gy,t);
>> max(y)

ans =    1.0996

>> plot(t,y);
>> xlabel('Time (seconds)');
>> plot(t,y,t,0*y+1,'m--',t,0*y+1.1,'m--');
>> xlabel('Time (seconds)');
>> 

>> Gu = ss(A-B*Kx,B*Kr,-Kx,Kr);
>> U = step(Gu,t);
>> plot(t,U);
>> xlabel('Time (seconds)');



Step response to y(t):  10% overshoot and a 2 second settling time

Step response to U(t):  10% overshoot can be achieved, but it takes more input


