
ECE 463/663 - Homework #5
Full State Feedback. Due Wednesday, February 21st

Please submit as a hard copy, email to jacob.glower@ndsu.edu, or submit on BlackBoard

1) Write a Matlab m-file which is passed

The system dynamics (A, B),

The desired pole locations (P)

and then returns the feedback gains, Kx, so that roots(A - B Kx) = P

function [Kx] = ppl(A, B, P0)

N = length(A);

T1 = [];
for i=1:N
 T1 = [T1, (A^(i-1))*B];
end

P = poly(eig(A));
T2 = [];
for i=1:N
 T2 = [T2; zeros(1,i-1), P(1:N-i+1)];
end

T3 = zeros(N,N);
for i=1:N
 T3(i, N+1-i) = 1;
end

T = T1*T2*T3;

Pd = poly(P0);

dP = Pd - P;

Flip = [N+1:-1:2]';
Kz = dP(Flip);
Kx = Kz*inv(T);

end

Problems 2-4) Assume the following dynamic system:

sX =

−6.1 3 0 0 0

3 −6.1 3 0 0

0 3 −6.1 3 0

0 0 3 −6.1 3

0 0 0 3 −3.1

X +

3

0

0

0

0

U

Y = 0 0 0 0 1 X

2) (20 points) Find the feedback control law of the form

U = KrR − KxX

so that

The DC gain is 1.000 and

The closed-loop poles are at {-2, -10, -11, -12, -13}

Plot

The resulting closed-loop step reponse, and

The resulting input, U

Input {A, B, C, D}

>> A = [-6.1,3,0,0,0;3,-6.1,3,0,0;0,3,-6.1,3,0];
>> A = [A;0,0,3,-6.1,3;0,0,0,3,-3.1]

 -6.1000 3.0000 0 0 0
 3.0000 -6.1000 3.0000 0 0
 0 3.0000 -6.1000 3.0000 0
 0 0 3.0000 -6.1000 3.0000
 0 0 0 3.0000 -3.1000

>> B = [3;0;0;0;0]

 3
 0
 0
 0
 0

>> C = [0,0,0,0,1]

 0 0 0 0 1

Use the ppl() routine to find the feedback gains:

>> Kx = ppl(A,B,[-2,-10,-11,-12,-13])

Kx = 6.8333 20.1556 33.7952 36.5292 31.2093

Check: Are the closed-loop poles correct? (yes, they are)

>> eig(A - B*Kx)

 -13.0000
 -12.0000
 -11.0000
 -10.0000
 -2.0000

Find Kr to make the DC gain 1.0000

>> DC = -C*inv(A - B*Kx)*B

DC = 0.0071

>> Kr = 1/DC

Kr = 141.2346

Plot the step response of the closed-loop system:

>> t = [0:0.01:5]';
>> Gcl = ss(A-B*Kx, B*Kr, C, 0);
>> zpk(Gcl)

 34320

(s+13) (s+12) (s+11) (s+10) (s+2)

>> y = step(Gcl,t);
>> plot(t,y)
>> xlabel('Time (seconds)');
>>

Plotting the input (U)

>> Gu = ss(A-B*Kx, B*Kr, -Kx, Kr);
>> U = step(Gu, t);
>> plot(t,U)
>> xlabel('Time (seconds)');

Input, U(t)

3) (20 points) Repeat problem #2 but find Kx and Kr so that

The DC gain is 1.000 and

The closed-loop dominant pole is at s = -2 and the other four poles don't move (the are the same as

the fast four poles of the open-loop system (eigenvalues of A)

Plot

The resulting closed-loop step reponse, and

The resulting input, U

First, determine where to place the closed-loop poles

>> P = eig(A)

 -11.1475
 -8.5925
 -5.2461
 -2.1708
 -0.3430

>> P(5) = -2

 -11.1475

 -8.5925

 -5.2461

 -2.1708

 -2.0000

Find the feedback gains to place the closed-loop poles there:

>> Kx = ppl(A,B,P)

Kx = 0.5523 1.0599 1.4816 1.7833 1.9405

>> DC = -C*inv(A - B*Kx)*B

DC = 0.1114

>> Kr = 1/DC

Kr = 8.9781

Note: Kx and Kr are much smaller than before. This should result in a similar response (same dominant

pole) but smaller inputs

Plotting the closed-loop step responses:

>> Gy = ss(A-B*Kx,B*Kr,C,0);
>> y = step(Gy,t);
>> Gu = ss(A-B*Kx,B*Kr,-Kx,Kr);
>> U = step(Gu,t);
>> plot(t,y)
>> xlabel('Time (seconds)');
>> plot(t,U)
>> xlabel('Time (seconds)');
>>

Step response: y(t)

Step Response: U(t)

Note:

y(t) is almost the same (same dominnat pole)

u(t) is about 10x smaller

Some pole locations are better than others...

4) (20 points) Repeat problem #2 but find Kx and Kr so that

The DC gain is 1.000

The 2% settling time is 2 seconds, and

There is 10% overshoot for a step input.

Plot

The resulting closed-loop step reponse, and

The resulting input, U

For 10% overshoot...

ζ = 0.591

s = −2 + j2.73

This results in 6.9% overshoot (the three real poles reduce the overshoot). Adjust the complex part until

you get 10% overshoot

>> P(5) = -2 + j*4;
>> P(4) = conj(P(5))

 -11.1475
 -8.5925
 -5.2461
 -2.0000 - 4.0000i
 -2.0000 + 4.0000i

>> Kx = ppl(A,B,P)

Kx = 0.4954 2.7316 7.0792 12.1274 15.5292

>> DC = -C*inv(A - B*Kx)*B;
>> Kr = 1/DC

Kr = 41.3579

>> Gy = ss(A-B*Kx,B*Kr,C,0);
>> y = step(Gy,t);
>> max(y)

ans = 1.0996

>> plot(t,y);
>> xlabel('Time (seconds)');
>> plot(t,y,t,0*y+1,'m--',t,0*y+1.1,'m--');
>> xlabel('Time (seconds)');
>>

>> Gu = ss(A-B*Kx,B*Kr,-Kx,Kr);
>> U = step(Gu,t);
>> plot(t,U);
>> xlabel('Time (seconds)');

Step response to y(t): 10% overshoot and a 2 second settling time

Step response to U(t): 10% overshoot can be achieved, but it takes more input

