
ECE 463: Homework #8
Linear Observers. Due Monday March 18th

Please submit as a hard copy, emai lto jacob.glower@ndsu.edu, or submit on BlackBoard

Cart and Pendulum from homework #4 with a state estimator (green)

Use the dynamics for the cart and pendulum from homework set #4

s















x

θ

x
.

θ
.














=















0 0 1 0

0 0 0 1

0 −2.45 0 0

0 9.42 0 0





























x

θ

x
.

θ
.














+















0

0

0.25

−0.1923














F

1) Design a full-state feedback control law of the form

U = F = KrR − KxX

so that the closed-loop system has

A 2% settling time of 8 seconds, and

5% overshoot for a step input.

Plot the step response of the linarized system in Matlab.

Tranlation: Place the closed-loop poles at s = -0.5 + j0.5243. Doing so using pole placement:

>> A = [0,0,1,0;0,0,0,1;0,-2.45,0,0;0,9.42,0,0]

 0 0 1.0000 0
 0 0 0 1.0000
 0 -2.4500 0 0
 0 9.4200 0 0

>> B = [0;0;0.25;-0.1923]

 0
 0
 0.2500
 -0.1923

1

>> C = [1,0,0,0];
>> Kx = ppl(A, B, [-0.5+j*0.5243,-0.5-j*0.5243,-2,-3])

Kx = -1.6717 -111.0911 -4.5781 -37.1530

>> DC = -C*inv(A-B*Kx)*B

DC = -0.5982

>> Kr = 1/DC

Kr =

 -1.6717

Plotting the step response of the closed-loop system:

>> G = ss(A - B*Kx, B*Kr, C, 0);
>> t = [0:0.01:15]';
>> y = step(G,t);
>> plot(t,y,'b',t,0*y+1,'m--')
>>

>>

2

Assume you can only measure the cart position and beam angle.

2) Design a full-order observer to estimate all four states so that the observer is 2-5 times faster than the plant.

You may use either cart position or beam angle (or both) as measurements.

There is a problem here: our pole-placement algorithm can't handle two inputs (position and angle).

So, let's just use position...

>> C = [1,0,0,0];
>> H = ppl(A', C', [-1+j, -1-j, -3, -4])'

 9.0000
 -50.1143
 37.4200
 -153.6720

3

4) Give the state-space model of the closde loop system using the states:

U = F = KrR − KxX

and plot the step response with initial conditions of

X(0) = [0, 0, 0, 0]' Xobserver(0) = [0.1, 0.1, 0.1, 0.1]'

(note: use the function step3)

The net system (plant + observer) is






sX

sXe




 =






A − BKx 0

HC − BKx A − HC










X

Xe




 +






BKr

BKr




R

1/sB

A

C
XsX Y

Plant

1/sB

A

C
XesXe Y

Observer

H

U

U

Kx

Kr
R

Problem 1 & 3

Kx
Problem 4 & 5

In Matlab

>> A8 = [A-B*Kx, zeros(4,4) ; H*C-B*Kx, A-H*C]

 0 0 1.0000 0 0 0 0 0
 0 0 0 1.0000 0 0 0 0
 0.4179 25.3228 1.1445 9.2882 0 0 0 0
 -0.3215 -11.9428 -0.8804 -7.1445 0 0 0 0
 9.0000 0 0 0 -9.0000 0 1.0000 0
 -50.1143 0 0 0 50.1143 0 0 1.0000
 37.8379 27.7728 1.1445 9.2882 -37.4200 -2.4500 0 0
 -153.9935 -21.3628 -0.8804 -7.1445 153.6720 9.4200 0 0

>> eig(A8)

 -4.0000
 -1.0000 + 1.0000i
 -1.0000 - 1.0000i
 -0.5000 + 0.5243i
 -0.5000 - 0.5243i
 -2.0000
 -3.0000
 -3.0000

4

Looks good - plant & observer & control law is stable

>> B8 = [B*Kr ; B*Kr];
>> C8 = eye(8,8);
>> D8 = zeros(8,1);
>> X0 = [0;0;0;0;0.1;0.1;0.1;0.1];
>> t = [0:0.01:15]';
>> R = 0*t + 1;
>> y = step3(A8, B8, C8, D8, t, X0, R);
>> plot(t,y)
>> ylim([-0.5,1.5])
>>

Step Response when Feeding Back Actual States

Note

The plant behaves the same as problem #1: it should since we're feeding back the observer states

The observer is kind of squirrelry for the first 5 seconds as it tries to figure out what the states are

5

4) Give the state-space model of the closde loop system using the state estimates:

U = F = KrR − KxXe

and plot the step response with initial conditions of

X(0) = [0, 0, 0, 0]' Xobserver(0) = [0.1, 0.1, 0.1, 0.1]'

(note: use the function step3)

The net system (plant + observer) is






sX

sXe




 =






A −BKx

HC A − HC − BKx










X

Xe




 +






BKr

BKr




R

Plotting the step response in Matlab:

>> A8 = [A, -B*Kx ; H*C, A-H*C-B*Kx]

A8 =

 0 0 1.0000 0 0 0 0 0
 0 0 0 1.0000 0 0 0 0
 0 -2.4500 0 0 0.4179 27.7728 1.1445 9.2882
 0 9.4200 0 0 -0.3215 -21.3628 -0.8804 -7.1445
 9.0000 0 0 0 -9.0000 0 1.0000 0
 -50.1143 0 0 0 50.1143 0 0 1.0000
 37.4200 0 0 0 -37.0021 25.3228 1.1445 9.2882
 -153.6720 0 0 0 153.3505 -11.9428 -0.8804 -7.1445

>> eig(A8)

 -0.5000 + 0.5243i
 -0.5000 - 0.5243i
 -1.0000 + 1.0000i
 -1.0000 - 1.0000i
 -4.0000
 -2.0000
 -3.0000 + 0.0000i
 -3.0000 - 0.0000i

The closed-loop poles are correct (observer & plant & feedback pole locations)

>> B8 = [B*Kr ; B*Kr]
>> C8 = eye(8,8);
>> D8 = zeros(8,1);
>> t = [0:0.01:15]';
>> X0 = [0;0;0;0;0.1;0.1;0.1;0.1];
>> R = 0*t+1;
>> y = step3(A8, B8, C8, D8, t, X0, R);
>> plot(t,y)
>>

6

The step response is pretty squirrely - due to the observer having bad estimates for the first four seconds.

7

If you start out with the observer states matching the plant states, it looks better:

>> X0 = zeros(8,1);
>> y = step3(A8, B8, C8, D8, t, X0, R);
>> plot(t,y)
>>

8

5) (20pt) Modify the cart and pendulum system to include

your control law, and

A full-order observer

Plot the step response of the nonlinear system + observer when

Xe = [0, 0, 0, 0]T

Xe = [0.1, 0.1, 0.1, 0.1]T

Step Response when feeding back actual states (plant & observer output)

Response when feeding back the state estimates

9

Sidelight: Just using position didn't work too well. Using trial and error, changing the C matrix to

C = [1, 10, 0, 0]

meaning I'm calling the output

y = x + 10θ

along with speeding up the observer poles to [-2, -3, -4, -5]

>> C = [1,10,0,0];
>> H = ppl(A', C', [-2, -3, -4, -5])'

 -17.1586
 3.1159
 -15.2265
 9.5646

results in a much better step response:

just using position and angle measurements

It works better if you take into account the angle measurement...

10

Code:

% Cart and Pendulum
% Lecture %20
% Separation Principle

X = [-1,0,0,0]';
Ref = 1;
dt = 0.01;
t = 0;

% Control Law
Kx = [-1.6717 -111.0911 -4.5781 -37.1530];
Kr = -1.6717;

% Full-Order Observer
Ae = [0,0,1,0;0,0,0,1;0,-2.45,0,0;0,9.42,0,0];
Be = [0;0;0.255;-0.192];
Ce = [1,10,0,0];
H = ppl(Ae', Ce', [-2, -3, -4, -5])';
Xe = X;

n = 0;
y = [];
while((t < 19.9) & (abs(X(1)) < 3))
 Ref = sign(sin(2*pi/10));
 U = Kr*Ref - Kx*Xe;
 dX = CartDynamics(X, U);
 dXe = Ae*Xe + Be*U + H*(Ce*X - Ce*Xe);

 X = X + dX * dt;
 Xe = Xe + dXe * dt;

 t = t + dt;
 n = mod(n+1, 5);
 if(n == 0)
 CartDisplay(X, Xe, Ref);
 end
 y = [y ; X(1), Xe(1), Ref];
end

hold off;
t = [1:length(y)]' * dt;
plot(t,y);

11

