ECE 463: Homework #8

Linear Observers. Due Monday March 18th
Please submit as a hard copy, emai lto jacob.glower@ndsu.edu, or submit on BlackBoard
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Cart and Pendulum from homework #4 with a state estimator (green)

Use the dynamics for the cart and pendulum from homework set #4
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1) Design a full-state feedback control law of the form
U=F=KR-KiX

so that the closed-loop system has

« A 2% settling time of 8 seconds, and
« 5% overshoot for a step input.

Plot the step response of the linarized system in Matlab.

Tranlation: Place the closed-loop poles at s =-0.5 + j0.5243. Doing so using pole placement:

>> A = [0,0,1,0;0,0,0,1;0,-2.45,0,0;0,9.42,0,0]

0 0 1.0000 0
0 0 0 1.0000
0 -2.4500 0 0
0 9.4200 0 0

>> B = [0;0;0.25;-0.1923]

0

0
0.2500
-0.1923



>> C = [1,0

>>

Kx

>>

DC

>>

Kx

-1.

,0,01;
= ppl (A, B,

-1.6717 -111.0911 -4.5781 -37.1530

—C*inv (A-B*Kx) *B
-0.5982

= 1/DC

6717

Plotting the step response of the closed-loop system:

>>

>>
>>
>>
>>
>>

G = ss(A - B*Kx, B*Kr, C, 0);
t = [0:0.01:151";
y = step(G,t);

plot(t,y,'b',t,0*y+1l, 'm—-")
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[-0.5+3*0.5243,-0.5-3%0.5243,-2,-31)




Assume you can only measure the cart position and beam angle.

2) Design a full-order observer to estimate all four states so that the observer is 2-5 times faster than the plant.
You may use either cart position or beam angle (or both) as measurements.

There is a problem here: our pole-placement algorithm can't handle two inputs (position and angle).

So, let's just use position...

> Cc = [1,0,0,0];
>> H = ppl(A'I C'I [—l+j, —l_j, _31 _41)'

9.0000
-50.1143
37.4200
-153.6720



4) Give the state-space model of the closde loop system using the states:
U=F=K,R-K.X

and plot the step response with initial conditions of

X(©0)=10,0,0,0r

(note: use the function step3)

The net system (plant + observer) is

sX | | A-Bk, 0 X
SXe HC_BKX A_HC Xe
In Matlab
>> A8 = [A-B*Kx, zeros(4,4) ; H*C-B*Kx,
0 0 1.0000 0
0 0 0 1.0000
0.4179 25.3228 1.1445 9.2882
-0.3215 -11.9428 -0.8804 -7.1445
9.0000 0 0 0
-50.1143 0 0 0
37.8379 27.7728 1.1445 9.2882
-153.9935 -21.3628 -0.8804 -7.1445
>> eig (A8)
-4.0000
-1.0000 + 1.00001
-1.0000 - 1.00001
-0.5000 + 0.52431i
-0.5000 - 0.52431
-2.0000
-3.0000
-3.0000

Xobserver(o) = [01, 01, 01, 01]'
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Looks good - plant & observer & control law is stable

>> B8 [B*Kr ; B*Kr];
>> C8 = eye(8,8);

>> D8 = zeros(8,1);

>> X0 = [0;0;0;0;0.1;0.1;0.1;0.17;
>> t = [0:0.01:151";

>> R = 0*t + 1;

>> y = step3 (A8, B8, C8, D8, t, X0, R);
>> plot (t,vy)

>> ylim([-0.5,1.5])

>>

Step Response when Feeding Back Actual States

Note

- The plant behaves the same as problem #1: it should since we're feeding back the observer states
« The observer is kind of squirrelry for the first 5 seconds as it tries to figure out what the states are



4) Give the state-space model of the closde loop system using the state estimates:

U:F:KrR_Kxxe

and plot the step response with initial conditions of

X(0)=10,0,0,0r
(note: use the function step3)
The net system (plant + observer) is
sX | | A ~BK,
sX, HC A-HC-BK,

Plotting the step response in Matlab:

X
Xe

>> A8 = [A, -B*Kx ; H*C, A-H*C-B*Kx]

A8 =
0 0 1.0000
0 0 0
0 -2.4500 0
0 9.4200 0
9.0000 0 0
-50.1143 0 0
37.4200 0 0
-153.6720 0 0
>> eig(A8)
-0.5000 + 0.52431
-0.5000 - 0.5243i
-1.0000 + 1.0000i
-1.0000 - 1.0000i
-4.0000
-2.0000
-3.0000 + 0.0000i

-3.0000 - 0.000041

The closed-loop poles are correct (observer & plant & feedback pole locations)

>> B8 = [B*Kr ; B*Kr]

>> C8 = eye(8,8);

>> D8 = zeros(8,1);

>> t = [0:0.01:151";

>> X0 = [0;0;0;0;0.1;0.1;0.1;0.17;

>> R = 0*t+1;

1.0000

OO O oo

>> vy = step3 (A8, B8, C8, D8, t, X0, R);

>> plot (t,vy)
>>

Xobserver(o) = [0'17 O‘Ia 0'1, 0.1]‘
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.3505
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The step response is pretty squirrely - due to the observer having bad estimates for the first four seconds.



If you start out with the observer states matching the plant states, it looks better:

>> X0 = zeros(8,1);

>> vy = step3 (A8, B8, C8, D8, t, X0, R);
>> plot (t,vy)

>>




5) (20pt) Modify the cart and pendulum system to include

your control law, and
A full-order observer

Plot the step response of the nonlinear system + observer when

Xe =10,0,0,0]"

Xe =1[0.1,0.1,0.1,0.1]"

20

Response when feeding back the state estimates




Sidelight: Just using position didn't work too well. Using trial and error, changing the C matrix to

c = [1, 10, 0, O]

meaning I'm calling the output

y=x+100

along with speeding up the observer poles to [-2, -3, -4, -5]

>> C [1,10,0,0]1;
>> H = ppl(A'r C'r [_21 _31 _41 _51)'

-17.1586
3.1159
-15.2265
9.5646

results in a much better step response:

- just using position and angle measurements
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It works better if you take into account the angle measurement...
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% Cart and Pendulum
% Lecture %20
% Separation Principle

X = [-1,0,0,01";

Ref = 1;

dt = 0.01;

t = 0;

% Control Law

Kx = [-1.6717 -111.0911 -4.5781 -37.1530];
Kr = -1.6717;

% Full-Order Observer

Ae = [0,0,1,0;0,0,0,1;0,-2.45,0,0;0,9.42,0,0];
Be = [0;0;0.255;-0.1927;

Ce = [1,10,0,071;

H = ppl(Ae'r Ce'r [_21 _3! _41 _51)';

Xe = X;

n = 0;

y = []

while((t < 19.9) & (abs(X(1l)) < 3))
Ref = sign(sin(2*pi/10));
U = Kr*Ref - Kx*Xe;
dX = CartDynamics (X, U);
dXe = Ae*Xe + Be*U + H* (Ce*X - Ce*Xe);

X = X 4+ dX * dt;
Xe = Xe + dXe * dt;

t =t + dt;
n = mod(n+l, 5);
if(n == 0)
CartDisplay (X, Xe, Ref);
end
y = [y ; X(1), Xe(l), Ref];
end
hold off;
t = [l:length(y)]"' * dt;
plot (t,y);
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