
ECE 463: Homework #8
Linear Observers.  Due Monday March 18th

Please submit as a hard copy, emai lto jacob.glower@ndsu.edu, or submit on BlackBoard

Cart and Pendulum from homework #4 with a state estimator (green)

Use the dynamics for the cart and pendulum from homework set #4
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1)  Design a full-state feedback control law of the form

U = F = KrR − KxX

so that the closed-loop system has

A 2% settling time of 8 seconds, and

5% overshoot for a step input. 

Plot the step response of the linarized system in Matlab.

Tranlation: Place the closed-loop poles at s = -0.5 + j0.5243.  Doing so using pole placement:

>> A = [0,0,1,0;0,0,0,1;0,-2.45,0,0;0,9.42,0,0]

         0         0    1.0000         0
         0         0         0    1.0000
         0   -2.4500         0         0
         0    9.4200         0         0

>> B = [0;0;0.25;-0.1923]

         0
         0
    0.2500
   -0.1923
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>> C = [1,0,0,0];
>> Kx = ppl(A, B, [-0.5+j*0.5243,-0.5-j*0.5243,-2,-3])

Kx =   -1.6717 -111.0911   -4.5781  -37.1530

>> DC = -C*inv(A-B*Kx)*B

DC =   -0.5982

>> Kr = 1/DC

Kr =

   -1.6717

Plotting the step response of the closed-loop system:

>> G = ss(A - B*Kx, B*Kr, C, 0);
>> t = [0:0.01:15]';
>> y = step(G,t);
>> plot(t,y,'b',t,0*y+1,'m--')
>> 

>> 
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Assume you can only measure the cart position and beam angle.

2) Design a full-order observer to estimate all four states so that the observer is 2-5 times faster than the plant.

You may use either cart position or beam angle (or both) as measurements.

There is a problem here:  our pole-placement algorithm can't handle two inputs (position and angle).

So, let's just use position...

>> C = [1,0,0,0];
>> H = ppl(A', C', [-1+j, -1-j, -3, -4])'

    9.0000
  -50.1143
   37.4200
 -153.6720
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4) Give the state-space model of the closde loop system using the states:

U = F = KrR − KxX

and plot the step response with initial conditions of

X(0) = [0, 0, 0, 0]' Xobserver(0) = [0.1, 0.1, 0.1, 0.1]'

(note:  use the function step3)

The net system (plant + observer) is
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In Matlab

>> A8 = [A-B*Kx, zeros(4,4) ; H*C-B*Kx, A-H*C]

         0         0    1.0000         0         0         0         0         0
         0         0         0    1.0000         0         0         0         0
    0.4179   25.3228    1.1445    9.2882         0         0         0         0
   -0.3215  -11.9428   -0.8804   -7.1445         0         0         0         0
    9.0000         0         0         0   -9.0000         0    1.0000         0
  -50.1143         0         0         0   50.1143         0         0    1.0000
   37.8379   27.7728    1.1445    9.2882  -37.4200   -2.4500         0         0
 -153.9935  -21.3628   -0.8804   -7.1445  153.6720    9.4200         0         0

>> eig(A8)

  -4.0000          
  -1.0000 + 1.0000i
  -1.0000 - 1.0000i
  -0.5000 + 0.5243i
  -0.5000 - 0.5243i
  -2.0000          
  -3.0000          
  -3.0000          
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Looks good - plant & observer & control law is stable

>> B8 = [B*Kr ; B*Kr];
>> C8 = eye(8,8);
>> D8 = zeros(8,1);
>> X0 = [0;0;0;0;0.1;0.1;0.1;0.1];
>> t = [0:0.01:15]';
>> R = 0*t + 1;
>> y = step3(A8, B8, C8, D8, t, X0, R);
>> plot(t,y)
>> ylim([-0.5,1.5])
>> 

Step Response when Feeding Back Actual States

Note

The plant behaves the same as problem #1:  it should since we're feeding back the observer states

The observer is kind of squirrelry for the first 5 seconds as it tries to figure out what the states are
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4) Give the state-space model of the closde loop system using the state estimates:

U = F = KrR − KxXe

and plot the step response with initial conditions of

X(0) = [0, 0, 0, 0]' Xobserver(0) = [0.1, 0.1, 0.1, 0.1]'

(note:  use the function step3)

The net system (plant + observer) is
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Plotting the step response in Matlab:

>> A8 = [A, -B*Kx ; H*C, A-H*C-B*Kx]

A8 =

         0         0    1.0000         0         0         0         0         0
         0         0         0    1.0000         0         0         0         0
         0   -2.4500         0         0    0.4179   27.7728    1.1445    9.2882
         0    9.4200         0         0   -0.3215  -21.3628   -0.8804   -7.1445
    9.0000         0         0         0   -9.0000         0    1.0000         0
  -50.1143         0         0         0   50.1143         0         0    1.0000
   37.4200         0         0         0  -37.0021   25.3228    1.1445    9.2882
 -153.6720         0         0         0  153.3505  -11.9428   -0.8804   -7.1445

>> eig(A8)

  -0.5000 + 0.5243i
  -0.5000 - 0.5243i
  -1.0000 + 1.0000i
  -1.0000 - 1.0000i
  -4.0000          
  -2.0000          
  -3.0000 + 0.0000i
  -3.0000 - 0.0000i

The closed-loop poles are correct (observer & plant & feedback pole locations)

>> B8 = [B*Kr ; B*Kr]
>> C8 = eye(8,8);
>> D8 = zeros(8,1);
>> t = [0:0.01:15]';
>> X0 = [0;0;0;0;0.1;0.1;0.1;0.1];
>> R = 0*t+1;
>> y = step3(A8, B8, C8, D8, t, X0, R);
>> plot(t,y)
>> 
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The step response is pretty squirrely - due to the observer having bad estimates for the first four seconds.
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If you start out with the observer states matching the plant states, it looks better:

>> X0 = zeros(8,1);
>> y = step3(A8, B8, C8, D8, t, X0, R);
>> plot(t,y)
>> 
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5)  (20pt) Modify the cart and pendulum system to include

your control law, and

A full-order observer

Plot the step response of the nonlinear system + observer when

Xe = [0, 0, 0, 0]T

Xe = [0.1, 0.1, 0.1, 0.1]T

Step Response when feeding back actual states (plant & observer output)

Response when feeding back the state estimates
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Sidelight:  Just using position didn't work too well.  Using trial and error, changing the C matrix to 

C = [1, 10, 0, 0]

meaning I'm calling the output

y = x + 10θ

along with speeding up the observer poles to [-2, -3, -4, -5] 

>> C = [1,10,0,0];
>> H = ppl(A', C', [-2, -3, -4, -5])'

  -17.1586
    3.1159
  -15.2265
    9.5646

results in a much better step response:

just using position and angle measurements

It works better if you take into account the angle measurement...
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Code:

% Cart and Pendulum
% Lecture %20
% Separation Principle
 
X = [-1,0,0,0]';
Ref = 1;
dt = 0.01;
t = 0;

% Control Law
Kx = [-1.6717 -111.0911   -4.5781  -37.1530];
Kr =  -1.6717;

% Full-Order Observer
Ae = [0,0,1,0;0,0,0,1;0,-2.45,0,0;0,9.42,0,0];
Be = [0;0;0.255;-0.192];
Ce = [1,10,0,0];
H = ppl(Ae', Ce', [-2, -3, -4, -5])';
Xe = X;
 
n = 0;
y = [];
while((t < 19.9) & (abs(X(1)) < 3))
   Ref = sign(sin(2*pi/10));
   U = Kr*Ref - Kx*Xe;
   dX = CartDynamics(X, U);
   dXe = Ae*Xe + Be*U + H*(Ce*X - Ce*Xe);
 
   X = X + dX * dt;
   Xe = Xe + dXe * dt;
 
   t = t + dt;
   n = mod(n+1, 5);
   if(n == 0)
      CartDisplay(X, Xe, Ref);
   end
   y = [y ; X(1), Xe(1), Ref];
end
 
hold off;
t = [1:length(y)]' * dt;
plot(t,y);
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