ECE 463/663 - Test \#3: Name

Due midnight Sunday, May 5th. Individual Effort Only (no working in groups)

The dynamics for a cart \& double pendulum are

$$
\left[\begin{array}{ccc}
3 & \left(2 c_{1}+c_{12}\right) & c_{12} \\
\left(2 c_{1}+c_{12}\right) & \left(3+2 c_{2}\right) & \left(1+c_{2}\right) \\
c_{12} & \left(1+c_{2}\right) & 1
\end{array}\right]\left[\begin{array}{c}
\ddot{\ddot{ }} \\
\ddot{\theta}_{1} \\
\ddot{\theta}_{2}
\end{array}\right]=C(\theta, \dot{\theta})+g\left[\begin{array}{c}
0 \\
2 s_{1}+s_{12} \\
s_{12}
\end{array}\right]+\left[\begin{array}{c}
F+d \\
T_{1} \\
T_{2}
\end{array}\right]
$$

Linearizing about

- $\mathrm{x}=0$
- $\mathrm{q} 1=0$ (first link points up)
- $\mathrm{q} 2=\mathrm{pi} \quad$ (second link points down)

$$
\left[\begin{array}{ccc}
3 & 1 & -1 \\
1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\ddot{\ddot{ }} \\
\ddot{\theta}_{1} \\
\ddot{\theta}_{2}
\end{array}\right]=g\left[\begin{array}{c}
0 \\
3 \theta_{1}-\theta_{2} \\
\theta_{1}-\theta_{2}
\end{array}\right]+\left[\begin{array}{c}
F+d \\
T_{1} \\
T_{2}
\end{array}\right]
$$

or in state-space form with a disturbance (d):

$$
s\left[\begin{array}{c}
x \\
\theta_{1} \\
\theta_{2} \\
\dot{x} \\
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]=\left[\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & -2 g & 0 & 0 & 0 & 0 \\
0 & 5 g & -g & 0 & 0 & 0 \\
0 & -g & -g & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
\theta_{1} \\
\theta_{2} \\
\dot{x} \\
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]\left[\begin{array}{c}
F+d \\
T_{1} \\
T_{2}
\end{array}\right]
$$

Design a feedback control law using LQR or LQG/LTR or VSS techniques (your pick) which

- Uses all three inputs (F, T1, and T2),
- Results in a 2% settling time between 6 to 12 seconds
- Less than 10% overshoot for a step input,
- An ability to track a constant set point, and
- An ability to reject a contant disturbance

Turn in for your exam

- A block diagram of your plant and controller
- Matlab code used to determine your control law,
- The resulting control law
- A step response with respect $\operatorname{Ref}=1$ and $\mathrm{d}=1$ for the linear model (above),
- A step response for the nonlinear simulation (Cart2 / Cart2Display / Cart2Dynamics) with your control law, and
- The main calling routine (Cart2.m) you used to generate this step response.

C Level (max 80 points)

Assume

- No noise
- All states are measured
- A constant set point, and
- A constant disturbance $(\mathrm{d}=1)$

B Level (max 90 points)

Assume

- No noise
- Only positions and angles are measured $\left\{x, \theta_{1}, \theta_{2}\right\}$
- A constant set point, and
- No disturbance $(\mathrm{d}=0)$

A Level (max 100 points)

Assume

- No noise
- Only positions and angles are measured $\left\{x, \theta_{1}, \theta_{2}\right\}$
- A constant set point, and
- An input disturbance ($\mathrm{d}=1$)

