
LaPlace Transforms and Dominant Poles

Static and Dynamic Systems:

Signals and Systems deals with trying to describe mathematically the relationship of a system's input (U), it's
output (Y), and the system itself (G).  This is a very general problem and covers global warming (where the input
corresponds to green-house gas emissions, the output is global temperature, and G is the Earth), economics
(money supply to inflation rate), and electronics (voltage in to voltage out).  

GU Y
X

A static system is one where the output and input are identical, save a scaling change.  This means that:

Static systems do not have memory:  you don't need to know anything about the previous output or input to
determine the output after t=0.
A sine wave input produces a sine wave output
A square wave input produces a square wave output
A random input produces the identical random output, only changed in amplitude.

With a static system you can model the system with a constant, k:

Y  k  X

A dynamic system, in contrast, requires a differential equation to relate the input and output.  This implies:

Dynamics systems have memory:  you have to specify the initial conditions as well as the input to
determine the output.
Dynamic systems change the shape of the input

A sine wave input produces a sine wave out, but at a different amplitude and with a delay
(phase shift)
An input that is not a sine wave is distorted.

With a dynamic system, you need to use a differential equation to model the system:

y  ay  by  cx  dx  ex

A transfer function is a shorthand way of writing a differential equation.  If you assume that all functions are in
the form of

y  est

then differentiation becomes multiplication by 's'

.
dy

dt
 s  est  sy

With this assumption, the differential equation can be written as a gain, G(s):

s2Y  asY  bY  cs2X  dsX  eX

Y  


cs2dse
s2asb


X
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or

Y  Gs  X

Gs  


cs2dse
s2asb




Steady-State Solution for Sinusoidal Inputs (phasors):

In Circuits II, the problem of finding the output (Y) when you know the input (U) and the system (G) was covered
for case when the input was a pure sine wave.  In this special case, phasor analysis was used to determine the gain
and phase shift.  For example, if

Gs  


200
s220s100




and

xt  4 sin20t

then y(t) is found by

Letting s = j20
Evaluating G(s) at s = j20




200
s220s100


 sj20

 0.40 1260

Finding the output as the gain times the input:

Y  0.4 1260  4 sin20t

yt  1.6 sin 20t  1260

Transient Solutions:  LaPlace Transforms

If the input is zero for t<0

x  xt  ut

where u(t) is the unit step function

ut 





1 t  0
0 t  0

then LaPlace transforms are used to find y(t).  In ECE 343 Signals, you looked at two-sided two-dimensional
LaPlace transforms.  In this class, life is much easier

t represents time, which is one-dimensional and
time always goes forward.

Hence, in this class, we look at the mundane case of single-sided one-dimensional LaPlace transforms. 
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For this case, you really only need a table of four LaPlace transforms to solve any problem.  With partial fraction
expansion, you can then solve any system.

Table 1:  Common LaPlace Transforms

Name Time:  y(t) LaPlace: Y(s)

delta (impulse) t 1

unit step u(t) 1
s

exponential a  ebtut a
sb

damped sinusoid 2a  ebtcosct  ut 


a
sbjc


 




a
sbjc




Example:

Find the output of a system which satisfies the following differential equation:

y'' + 3'y + 2y = 4x

given that all initial conditions are zero and u is a unit step input,

x(t) = u(t)

Solution:  

Convert to LaPlace notation

s2  3s  2Y  4X

Y  


4
s23s2


X

Substitute the LaPlace transform for U(s)

Y  


4
s23s2






1
s



Factor and use partial fractions to expand Y(s)

Y  


4
ss1s2




Y  


2
s

 



4
s1


 




2
s2




Use the above table to convert back to y(t)

yt  2  4et  2e2tut

Example 2:

Find the y(t) given that
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Ys  G  X  


15
s22s10


 




1
s



Solution:

Factoring Y(s)

Ys  


15
ss1j3s1j3




Using partial fraction expansion:

Ys  


1.5
s

 




0.7906161.560

s1j3

 




0.7906161.560

s1j3



        for t>0yt  1.5  1.5812  et  cos 3t  161.560

Dominant Poles

Poles represent energy and how the energy in the system moves about:  if there are N ways to store energy, the
system has N poles.  In theory, the number of energy states for any system is very large - suggesting that you need
very high-order differential equations to describe any system.  Fortunately, just a few poles dominate the
response.  If you model only includes these dominant poles you'll have

A fairly accurate model (good), 
That is fairly low-order (also good).

To get the idea of what a dominant pole is, consider the following system:

Y  


200
s1s100


X

where

xt  ut
To find y(t), replace X with its LaPlace transform

Y  


200
s1s100






1
s



Expand using partial fractions

Y  


2
s

 



2.0202

s1

 




0.0202
s100




Taking the inverse LaPlace transform

     t > 0yt  2  2.0202et  0.0202e100t

Here, the pole at -1 is dominantes the pole at -100 for two reasons:

Its initial condition is 100x larger than the pole at s = -100, and
Its transient response lasts 100x longer than the pole at s = -100

Hence, the pole at -1 is called 'the dominant pole' and the system can be approximated by

Keeping the same dominant pole(s), and
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Matching the DC gain

Y  


200
s1s100


X  


2

s1

X

The dominant pole of a system is the pole closest to s=0

If the pole is a single-real pole, the system behaves like a 1st-order system
If the pole is a pair of complex conjugate poles, the system behaves like a 2nd-order system

First-Order approximations

If the system has a single dominant pole, then the system can be approximated as

Y  


a
sb


X

All systems like this behave about the same

The DC gain is a
b

The transient decays as ebt

In theory, it takes infinitely long for  to go to zero.  Infinity is a difficult number to work with - so instead theebt

2% settling time is often used:

0.02  ebt

Taking the natural log of both sides:

3.912  bt

4  bt

With two degrees of freedom, yt  4
b

The 2% settling time of a system is 4 / the real part of the dominant pole

Example:  Predict what the step response for the following system will look like:

Y  


50,000
s3s10s20s50


X

Solution:

The DC gain of this system is 1.67




50,000
s3s10s20s50


 s0

 1.67

The dominant pole is s = -3
The 2% settling time will be 4/3 second, and
The system behaves similar to 
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Gs  


50,000
s3s10s20s50


 




5
s3




Checking with Matlab

>> G4 = zpk([],[-3,-10,-20,-50],50000)
 
          50000
--------------------------
(s+3) (s+10) (s+20) (s+50)
 
>> evalfr(G4,0)

    1.6667

>> G1 = zpk([],[-3],5)
 
  5
-----
(s+3)
 
>> t = [0:0.01:3]';
>> y1 = step(G1,t);
>> y4 = step(G4,t);
>> plot(t,y1,t,y4);
>> 

Step response of the 4th-order system (blue) and 1st-order model (green)

As a rule of thumb, poles more than 10x faster than the dominant pole can be ignored.  Here, the pole at -10 is
borderline - meaning the 1st-order model will be a little off.  This is seen in the slight delay in the actual 4th-order
system.
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Example 2:   Find the transfer function for the system with the following response to a unit step input:

Solution:  This is a 1st-order system  -  it behaves like a room warming up or a capacitor charging (no
oscillations).  So we know it is of the form

Gs  a
sb

DC Gain:  The steady-state output is 4.3




a
sb


 s0

 4.3

The 2% settling time is about 0.57 seconds (ball park)

T2%  4
b

b  4
0.57s  7

Putting it together:

Gs  


30.1
s7




2nd-Order Approximations

If the system's dominant poles are a complex conjugate pair, the system behaves like a 2nd-order system

Gs  


ko
2

s22oso
2

 






k
2d

2


sjdsjd






Here you need three parameters to describe the system (pick 3 of the following)

The DC gain is  as Gs s  0
The complex part of the dominant pole is the frequency of oscillation
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d  2f  2
T

The real part of the dominant pole tells you the 2% settling time

T2%  4


The angle of the dominant pole tells you the overshoot

OS  a
b
 exp






12




where  (zeta) is termed the damping ratio and is defined as

  cos 

Example:  Determine the step response of

Y  


20,000

s1j6s1j6s50

X

Solution:  

The dominant poles are s  1  j6
The DC gain is 10.81

meaning

The system will settle out at 10.81  (the DC gain)
The 2% settling time will be 4 seconds  (4/1)
The frequency of oscillation will be 6 rad/sec  (about 1 Hz)
The damping ratio is 0.164, meaning
There will be 59% overshoot for a step input (59% above 10.81)

Checking in MATLAB:

>> G3 = zpk([],[-1+j*6,-1-j*6,-50],20000)
 
        20000
----------------------
(s+50) (s^2 + 2s + 37)
 
>> t = [0:0.001:6]';
>> y3 = step(G3,t);
>> plot(t,y3);
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Example 4:  Find the transfer function for a system with the following response to a unit step input:

Solution:   This is a 2nd-order system (the output rings, meaning you have energy bouncing between two states.
For complex poles, you need two pieces of information (real part, complex part, and/or angle)

s    jd  n
Real Part of Dominant Pole:   The 2% settling time is about 4 seconds

  4
t2%

 4
4  1

Complex Part:  The frequency of oscillation is

d 
3 cycles

3.2 seconds  2  5.89 rad
sec

Angle:  The overshoot is

OS  17.510.8
10.8  0.62

  0.1504  cos

  81.30

DC gain:  The output is 10.8 at steady-state.  Since this is a unit step input, the DC gain is 10.8/1 = 10.8.

Putting it together

Gs  


385
s1j5.89s1j5.89



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2nd-Order Approximations:

Gs  


ko
2

s22oso
2

 






k
2d

2


sjdsjd





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damping ratio max gain  cos Mm  1

2 12

overshoot gain at corner%OS  exp








12






1
2

damped natural freqd  2
T  2f

2% settling timeTs  T2%  4


zeta 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%OS 100% 73% 53% 37% 25% 16% 9% 5% 1.5% 0.1% 0%

Mm inf 5.02 2.55 1.75 1.36 1.15 1.04 1 1 1 1
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