NDSU LaPlace Transforms & Dominant Poles ECE 463

LaPlace Transforms and Dominant Poles

Static and Dynamic Systems:

Signals and Systems deals with trying to describe mathematically the relationship of a system's input (U), it's
output (Y), and the system itself (G). This is a very general problem and covers global warming (where the input
corresponds to green-house gas emissions, the output is global temperature, and G is the Earth), economics
(money supply to inflation rate), and electronics (voltage in to voltage out).

— G —Y

A static system is one where the output and input are identical, save a scaling change. This means that:

- Static systems do not have memory: you don't need to know anything about the previous output or input to
determine the output after t=0.

- Assine wave input produces a sine wave output

-+ A square wave input produces a square wave output

- Arandom input produces the identical random output, only changed in amplitude.

With a static system you can model the system with a constant, k:

Y=k-X

A dynamic system, in contrast, requires a differential equation to relate the input and output. This implies:

- Dynamics systems have memory: you have to specify the initial conditions as well as the input to
determine the output.
- Dynamic systems change the shape of the input
- Asine wave input produces a sine wave out, but at a different amplitude and with a delay
(phase shift)
« An input that is not a sine wave is distorted.

With a dynamic system, you need to use a differential equation to model the system:
y” +ay’ + by = cx” +dx’ +ex

A transfer function is a shorthand way of writing a differential equation. If you assume that all functions are in
the form of

y = et
then differentiation becomes multiplication by 's'

dy _ st _
T =s-et=gy.

With this assumption, the differential equation can be written as a gain, G(s):

s2Y +asY + bY = ¢s2X + dsX + eX

2
Y = (cs2 +ds+e) X
s“+as+b
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or
Y =G(s)- X
_ [ cs?+ds+e
G(s) = ( s2+as+b )

Steady-State Solution for Sinusoidal Inputs (phasors):

In Circuits 11, the problem of finding the output (Y) when you know the input (U) and the system (G) was covered
for case when the input was a pure sine wave. In this special case, phasor analysis was used to determine the gain
and phase shift. For example, if

G(s) = (52+22005(1100)

and
X(t) = 4sin(20t)

then y(t) is found by

Letting s = j20
Evaluating G(s) at s = j20

w0 ) _ o
(s?+205+1oo) iz 0.40/ — 126

Finding the output as the gain times the input:
Y = (0.4£ —126°) - (4sin(20t))

y(t) = 1.6sin (20t — 126°)

Transient Solutions: LaPlace Transforms
If the input is zero for t<0

X = X(1) - u(t)
where u(t) is the unit step function

1 t>0
“(t)_{o t<0

then LaPlace transforms are used to find y(t). In ECE 343 Signals, you looked at two-sided two-dimensional
LaPlace transforms. In this class, life is much easier

t represents time, which is one-dimensional and
time always goes forward.

Hence, in this class, we look at the mundane case of single-sided one-dimensional LaPlace transforms.
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For this case, you really only need a table of four LaPlace transforms to solve any problem. With partial fraction

expansion, you can then solve any system.

Table 1: Common LaPlace Transforms

Name Time: y(t) LaPlace: Y(s)
delta (impulse) d(t) 1
unit step u(t) :
exponential a - e dtu(t) Lb

S+

damped sinusoid

2a - e Ptcos(ct — O)u(t)

(

EVAS) ) + (aé—e)
s+b+jc s+b—jc

Example:

Find the output of a system which satisfies the following differential equation:

y"+ 3y +2y=4x

given that all initial conditions are zero and u is a unit step input,

X(t) = u(t)

Solution:

Convert to LaPlace notation

(s2 + 35+ 2)Y = 4X

_ 4
Y= (sz+3s+2) X

Substitute the LaPlace transform for U(s)

v=(z23) ()

Factor and use partial fractions to expand Y (s)
_ 4
Y= (s(s+1)(s+2))

v=(2)+(z)+(&)

Use the above table to convert back to y(t)

y(t) = (2 —4et + 2e72Yu(t)

Example 2:

Find the y(t) given that
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Y(5)=G-X= (32;;110) ' (%)

Solution:

Factoring Y(s)

_ 15
Y(s)= ((s)(s+1+13>(s+1—j3))

Using partial fraction expansion:

_ (15 0.7906./-161.56° 0.7906./161.56°
Y(S) - ( S ) + ( s+1+j3 ) + ( s+1-j3 )

y(t)=1.5+15812-et-cos(3t+161.56%)  for t>0

Dominant Poles

Poles represent energy and how the energy in the system moves about: if there are N ways to store energy, the
system has N poles. In theory, the number of energy states for any system is very large - suggesting that you need
very high-order differential equations to describe any system. Fortunately, just a few poles dominate the
response. If you model only includes these dominant poles you'll have

- A fairly accurate model (good),
« That is fairly low-order (also good).

To get the idea of what a dominant pole is, consider the following system:

_ 200
Y= ((s+1)(s+100)) X

where

X(t) = u(t)

To find y(t), replace X with its LaPlace transform

B 200 1
Y= ((s+l)(s+100)) (5)

Expand using partial fractions
_(2 ~2.0202 0.0202
Y= (S) +( s+1 ) +(s+100)

Taking the inverse LaPlace transform
y(t) = 2—-2.0202e 7t +0.0202¢ %% t>0

Here, the pole at -1 is dominantes the pole at -100 for two reasons:

« Its initial condition is 100x larger than the pole at s = -100, and
« Its transient response lasts 100x longer than the pole at s = -100

Hence, the pole at -1 is called 'the dominant pole' and the system can be approximated by
- Keeping the same dominant pole(s), and
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+ Matching the DC gain

_ 200 [ 2
Y= ((s+l)(s+100)) X~ (s+l) X

The dominant pole of a system is the pole closest to s=0

- If the pole is a single-real pole, the system behaves like a 1st-order system
- If the pole is a pair of complex conjugate poles, the system behaves like a 2nd-order system

First-Order approximations

If the system has a single dominant pole, then the system can be approximated as

v=(2)x

All systems like this behave about the same

- TheDC gainis §

- The transient decays as e ™

In theory, it takes infinitely long for et to go to zero. Infinity is a difficult number to work with - so instead the
2% settling time is often used:

0.02 =e™
Taking the natural log of both sides:
—-3.912 = bt
4~ —Dht
t= % With two degrees of freedom, y

The 2% settling time of a system is 4 / the real part of the dominant pole

Example: Predict what the step response for the following system will look like:

50,000
Y= ((s+3)(s+10)(s+20)(s+50)) X

Solution:
- The DC gain of this system is 1.67

50,000 _
((s+3)(s+10)(s+20)(s+50)) <o 1.67

«  The dominant pole is s = -3
+ The 2% settling time will be 4/3 second, and
« The system behaves similar to
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. 50,000 (5
G(s) = ((s+3)(s+10)(s+20)(s+50)) ~ (s+3)
Checking with Matlab

>> G4 = zpk([1.,[-3,-10,-20,-50],50000)

(s+3) (s+10) (s+20) (s+50)

>> evalfr(G4,0)

1.6667
>> 61 = zpk([1.[-3].5)
5
(s+3)

>> t = [0:0.01:3]";
>> yl = step(Gl,t);
>> y4 = step(G4,t);
>> plot(t,yl,t,y4);

Step response of the 4th-order system (blue) and 1st-order model (green)

As a rule of thumb, poles more than 10x faster than the dominant pole can be ignored. Here, the pole at -10 is

borderline - meaning the 1st-order model will be a little off. This is seen in the slight delay in the actual 4th-order

system.
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Example 2: Find the transfer function for the system with the following response to a unit step input:

4.5

4.0

3.5

3.0

2.5

2.0

0.5

0.0 T T T T T T T T T T T T T T
0.0 0.1 0.2 0.3 04 0.5 0.6 07 0.8 0.9 1.0

Time (seconds)

Solution: This is a 1st-order system - it behaves like a room warming up or a capacitor charging (no
oscillations). So we know it is of the form
-2
G(s) = s+b

DC Gain: The steady-state output is 4.3

(=) =43

The 2% settling time is about 0.57 seconds (ball park)
_4
Tow =3
-4 _
b= 0.57s 7

Putting it together:
~ (301
o)~ (%)

2nd-Order Approximations

If the system's dominant poles are a complex conjugate pair, the system behaves like a 2nd-order system

G ( ko ) (a?+a)
()~ $2420mostm3/ | (S+oHog)(S+o—jod)

Here you need three parameters to describe the system (pick 3 of the following)

- TheDC gainis G(s) ass — 0
- The complex part of the dominant pole is the frequency of oscillation
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wqg = 2nf = =
« The real part of the dominant pole tells you the 2% settling time
Tow = =
« The angle of the dominant pole tells you the overshoot
b P iz
where £ (zeta) is termed the damping ratio and is defined as
¢ =cos(0)
Example: Determine the step response of
Vo ( 20,000 )
T\ (s+14j6)(s+1-j6)(s+50)
Solution:
+  The dominant poles are s = -1+ j6
+ The DC gainis 10.81
meaning
« The system will settle out at 10.81 (the DC gain)
+  The 2% settling time will be 4 seconds (4/1)
- The frequency of oscillation will be 6 rad/sec (about 1 Hz)
- The damping ratio is 0.164, meaning
- There will be 59% overshoot for a step input (59% above 10.81)
Checking in MATLAB:
>> 63 = zpk([],[-1+j*6,-1-j*6,-50],20000)
20000
(5+50) ("2 + 25 + 37)
>> t = [0:0.001:6]";
>> y3 = step(G3,t);
>> plot(t,y3);
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Example 4: Find the transfer function for a system with the following response to a unit step input:

o T T T
0 1 2 3 4 5 6

Time (seconds)

Solution: This is a 2nd-order system (the output rings, meaning you have energy bouncing between two states.
For complex poles, you need two pieces of information (real part, complex part, and/or angle)

S=0+]0g=wnL0

Real Part of Dominant Pole: The 2% settling time is about 4 seconds

Complex Part: The frequency of oscillation is

_3cycles i rad
W4 = 3.2 seconds 2n =15.89 sec

Angle: The overshoot is

0§ =118 _ 62

10.8
¢ =0.1504 =cos©O
0 =281.3°

DC gain: The output is 10.8 at steady-state. Since this is a unit step input, the DC gain is 10.8/1 = 10.8.
Putting it together

- 385
G(s) = ((s+1+j5.89)(s+1—j5.89))
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2nd-Order Approximations:

k-(cszﬂng)

G(s) ~ ( ko3

32+2Cwos+o)§) B ((s+c+jwd)(s+cs—jwd)J

imag
A
Wo
*\\
Wy \\
\
N
W, \
Wy
9 \ real
- —= L
18 20 [
- 0.1 F
16| — 15 |
1.4 03 10
B 0.4 r
1.2 05 5F
L 0.6 E
1 0 F
08 1.0 = f
0.6 10|
0.4 15|
0.2 20 |
ol 25t
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. . 1
{=cos0 damping ratio Mn =
2¢1-¢2
0 _ 1S 4
%0S =exp | —| —= overshoot 3
[1-¢2 ¢

0g = Z = 2nf

damped natural freq

max gain

gain at corner

=
Ts=Top =12 2% settling time
zeta 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
%0S 100% 73% 53% 37% 25% 16% 9% 5% 1.5% 0.1% 0%
Mm inf 5.02 2.55 1.75 1.36 1.15 1.04 1 1 1 1
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