NDSU LaGrange Formulation of Dynamics

ECE 463

LaGrangian Formulation of System Dynamics

Find the dynamics of a nonlinear system:

Circuit analysis tools work for simple lumped systems. For more complex systems, especially nonlinear ones,
this approach fails. The Lagrangian formulation for system dynamics is a way to deal with any system.

Definitions:
KE Kinetic Energy in the system
PE Potential Energy

9
ot
% The full derivative with respect to t.
d _0ox 0¥ o
dt = oxot + oy ot + oz ot T ...
L Lagrangian = KE - PE
Procedure:

1) Define the kinetic and potential energy in the system.

2) Form the Lagrangian:
L=KE-PE
3) The input is then

= _i(i> _a
I dt\ox; OXi

where F, is the input to state x,. Note that

« If x, is a position, F, is a force.
- Ifx isan angle, F, is a torque

The partial derivative with respect to 't'. All other variables are treated as constants.
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Example:

Example: Determine the dynamics of a rocket

Step 1: Determine the potential and kinetic energy of the rocket

Potential Energy

PE = mgx
Kinetic Energy:
KE = 2mx?

Step 2: Set up the LaGrangian
L=KE-PE

L = 2mx? — mgx

Step 3: Take the partials

F=3(3)- (%)
F = £(mx) — (-mg)

Take the full derivative with respect to t

F=mX+mx+mg

Note that if the rocket is loosing mass you get the term mx. If you leave this term out, the rocket misses the

target.
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Example 2: Ball in a parabolic bowl

0.8~
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Determine the dynamics of a ball rolling in a bowl characterized by

_ 12
y_2X

Step 1: Define the kinetic and potential energy
Potential Energy:

PE = mgy = zmgx?

Kinetic Energy: This has two terms, one for translation and one for rotation .
KE = 2mv2 + 262

The velocity is

The rotational velocity is

position =ro

v=ro
Note that
y=3%*
y = XX
gives
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2
KE = 2mv? + 2J(¥)
KE = g(m + i) V2

KE

N |~

(m + :—2) (X2 +y?)

KE %(m + rJ—Z) ()'(2 + (xk)z)

The inertia depends upon what type of ball you are using:

J=0 point mass with all the mass in the center

J= %ml‘2 solid sphere

J:

wIN

mr? hollow sphere

J=mr? hollow cyllinder

Assume the ball is a solid sphere

KE = ;(m + érr";z) (52 + (k)2

KE = 0.7m(1? + x?)x?

Step 2: Form the LaGrangian
L=KE-PE

v 1
L =0.7m(1% + x*)X* — 2mgx?

Step 3: Take the partials. The partial with respect to X is:
oL )
& = 0.7m(2X)x< — mgx

a_ (2 —
> = L.4mxx< —mgx

The partial with respect to dx/dt is:

& = 1.4m(1% + x?)X

The full derivative of the partial with respect to dx/dt is
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3(2) = da.amaz +xoyi

dt \ ox

d (%) = 1.4m(2x3)X + 1.4m(12 + X)X

dt

(1) 5 gmxk? + 1.4m(1% + X)X

dt \ ox

So, the dynamics are:

d( oL oL
F-5(5)-(3)
F=(2.8mxx%+ 1.4m(12 + x?)X) — (1.4mxx? — mgx)

F=1.4mxx? + 1.4m(12 + x*)X + mgx

In free fall, F = 0. Solving for the highest derrivative:

(1.4)'(2+g) X

- 1.4(12+x2)
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Matlab Code (Ball.m)

% Dynamics of a ball rolling in a bowl where

% y =0.5x"2

X = 1.5;

dx = 0;

dt = 0.01;

t = 0;

while(t < 100)

% compute the acceleration
ddx = -( 1.4*%dx*dx + 9.8) * x /7 ( 1.4*(1 + x*X) );
% integrate

X = X + dx*dt;
dx = dx + ddx*dt;

% display the ball
y = 0.5*%x*X;

x1
yl

% draw the ball

i = [0:0.01:1]" * 2 * pi;

xb 0.05*cos(i) + X;

yb = 0.05*sin(i) + 0.5*x"2 + 0.05 + 0.02*abs(x);

[-2:0.01:2]";
0.5* (x1 .~ 2);

% line through the ball

q = [0, pi] - x/0.05;

xb1 0.05*cos(q) + X;

ybl = 0.05*sin(q) + 0.5*x"2 + 0.05 + 0.02*abs(x);

plot(xl,yl,"b", xb, yb, "r®, xbl, ybl, "r);

pause(0.01);
end
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