
Servo-Compensators: General Design

From before,

If you are trying to track a constant set-pount (R) and/or reject a constant disturbance (d), you add a servo

compensator with poles at s = 0.

If you are trying to track a sinusoidal set-point (R) at frequency and/or reject a sinusoidal disturbance atω

frequency , you add a servo compensator with poles at s = .ω ±jω

Not surprisingly,

If you are trying to track a set point with a spectra at and/or reject a disturbance with a0, jω, −jω

spectra at , you add a servo-compensator with poles at .0, jω, −jω 0, jω, −jω

ZsZ

Az

B

A

C
XsXU

Bz

d(t) R

Kx

Kz

control law

Servo-Compensator

Plant

Example: Let the plant be

sX = AX + BU

Y = CX

Define a servo-compensator

sZ = AzZ + Bz

so that the eigenvalue of Az are

eig(Az) = 0, ±jω

Feed the servo-compensator with the difference between Y and the set point R

In state-space, the plant plus servo-compensator looks like the following:

NDSU Servo-Compensators: General Design ECE 463

JSG 1 rev March 5, 2020

s





X

Z




 =






A 0

BzC Az










X

Z




 +






B

0




U +






0

−Bz




R

U = − Kx Kz 





X

Z






or you can write this as

s





X

Z




 =






A − BKx −BKz

Az BzC










X

Z




 +






0

−Bz




R

Example:

Assume a 4th-order heat equation:

sX =













−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1












X +













1

0

0

0












U +













1

0

0

0












d(t)

Y =  0 0 0 1 X

Design a feedback control law for the following system so that

The 2% settling time is 13 seconds,

There is no overshoot for a step input,

Y tracks a constant setpoint (R = 1), and

Y rejects a sinusoidal disturbance at 1 rad/sec

d(t) = sin(t)

Note: This also works for any combination of constant + 1 rad/sec set point (R) and disturbance (d)

R(t) = a1 + b1cos (t) + c1sin(t)

d(t) = a2 + b2cos (t) + c2sin(t)

Step 1: Add a servo compensator which is controllable and has poles at {0, j, −j}

sZ =













0 1
.
.. 0

−1 0
.
.. 0

.
.. . ..

0 0
.
.. 0












Z +













1

1
. ..

1












(R − Y)

NDSU Servo-Compensators: General Design ECE 463

JSG 2 rev March 5, 2020

Step 2: Create the augmented system: plant + servo compensator

s





X

Z




 =






A 0

BzC Az










X

Z




 +






B

0




U +






0

−Bz




R

s










X
. ..

Z









=


























−2 1 0 0
.
.. 0 0 0

1 −2 1 0
.
.. 0 0 0

0 1 −2 1
.
.. 0 0 0

0 0 1 −1
.
.. 0 0 0

.
..

0 0 0 1
.
.. 0 1 0

0 0 0 1
.
.. −1 0 0

0 0 0 1
.
.. 0 0 0



































X
. ..

Z









+


























1

0

0

0
. ..

0

0

0

























U +


























0

0

0

0
. ..

−1

−1

−1

























R

Design a full-state feedback control law to meet the design specs. Somwhat arbitrarilly, place the closed-loop

poles at {-1, -2, -2.2, -2.3, -2.4, -0.3+j, -0.3-j} using Bass Gura

In Matlab:

A = [-2,1,0,0;1,-2,1,0;0,1,-2,1;0,0,1,-1]

 -2 1 0 0

 1 -2 1 0

 0 1 -2 1

 0 0 1 -1

B = [1;0;0;0]

 1

 0

 0

 0

C = [0,0,0,1]

 0 0 0 1

Az = [0,1,0;-1,0,0;0,0,0]

 0 1 0

 -1 0 0

 0 0 0

Bz = [1;1;1]

 1

 1

 1

NDSU Servo-Compensators: General Design ECE 463

JSG 3 rev March 5, 2020

A7 = [A, zeros(4,3) ; Bz*C, Az]

 -2 1 0 0 : 0 0 0

 1 -2 1 0 : 0 0 0

 0 1 -2 1 : 0 0 0

 0 0 1 -1 : 0 0 0

 --

 0 0 0 1 : 0 1 0

 0 0 0 1 : -1 0 0

 0 0 0 1 : 0 0 0

B7u = [B ; zeros(3,1)]

 1

 0

 0

 0

 - - - - -

 0

 0

 0

K7 = ppl(A7, B7u, [-1, -2, -2.2, -2.3, -2.4, -0.3+j, -0.3-j])

 3.5000 12.0900 29.6810 63.4358 0.5236 21.3719 26.4739

This gives

Kx = [3.5000 12.0900 29.6810 63.4358]

 Kz = [0.5236 21.3719 26.4739]

To simulate the system, you need to add a constant and / or sinusoidal disturbance and set point. These have

poles at {0, +j, -j} as well:

sXr = ArXr

sXr =













0 1
.
.. 0

−1 0
.
.. 0

.
.. . ..

0 0
.
.. 0












Xr

R = CrXr

d = CdXr

The initial condition determines the amplitude and phase shift of the sinusoid (first two states) and the constant

(3rd state). Cr and Cd determine what the set point and disturbance are.

NDSU Servo-Compensators: General Design ECE 463

JSG 4 rev March 5, 2020

Using the Step3 command

function [y] = step3(A, B, C, D, t, X0, U)

The servo compensator can track a constant set point:

B7r = [0*B ; -Bz]

 0

 0

 0

 0

 -1

 -1

 -1

X0 = zeros(7,1);

t = [0:0.01:20]';

R = 0*t + 1;

y = step3(A7-B7u*K7, B7r, C7, 0, t, X0, R);

plot(t,R,,'r',t,y,'b')

Step Response with respect to R. The output tracks a constant set point

NDSU Servo-Compensators: General Design ECE 463

JSG 5 rev March 5, 2020

The servo compensator also rejects a constant disturbance:

B7u = [B; 0 * Bz]

 1

 0

 0

 0

 0

 0

 0

y = step3(A7-B7u*K7, B7u*100, C7, 0, t, X0, R);

plot(t,R,t,y)

Response to a step disturbance (d = 100). The servo compensator rejects a constant disturbance.

NDSU Servo-Compensators: General Design ECE 463

JSG 6 rev March 5, 2020

The servo compensator can track a 1 rad/sec sine wave:

R = sin(t);

y = step3(A7-B7u*K7, B7r, C7, 0, t, X0, R);

plot(t,y,t,R,'r')

The servo compensator can track a sinusoidal set point at 1 rad/sec

The servo compensator can reject a disturbance at 1 rad/sec

R = sin(t);

y = step3(A7-B7u*K7, B7u*100, C7, 0, t, X0, R);

plot(t,y,t,R,'r')

NDSU Servo-Compensators: General Design ECE 463

JSG 7 rev March 5, 2020

It can also

Track a constant set point,

While rejecting a sinusoidal disturbance at 1 rad/sec

To do this, define the B matrix to be a 7x2 matrix and the inputs to be a 1x2 matrix





X
.

Z
.





=




A − BKx −BKz

BzC Az









X

Z




 +





0 B

−1 0









R

d






B7 = [B7r, B7u];

D7 = [0, 0];

R = 0*t + 1;

d = 100*sin(t);

y = step3(A7-B7u*K7, [B7r, B7u], C7, D7, t, X0, [R, d]);

plot(t,y,t,R,'r')

NDSU Servo-Compensators: General Design ECE 463

JSG 8 rev March 5, 2020

