
Canonical Forms and
Similarity Transforms

NDSU ECE 463/663

Lecture #5

Inst: Jake Glower

Please visit Bison Academy for corresponding

lecture notes, homework sets, and solutions

Canonical Forms

Problem: Represent the transfer function

Y = 


a3s3+a2s2+a1s+a0

s4+b3s3+b2s2+b1s+b0


U

in state-space form

sX = AX + BU

Y = CX + DU

{A, B, C, D} has 25 degrees of freedom

The transfer function privides 8 constraints

There are an infinte number of solutions

Some of these have names (canonical forms)

Many do not

XsXU Y

A

B C

D

1/s

Controller Canonical Form

Define a dummy variable, X

X = 


1

s4+b3s3+b2s2+b1s+b0


U

Y = (a3s3 + a2s2 + a1s + a0)X

Solve for the highest derivative of X

s4X = U − b3s3X − b2s2X − b1sX − b0X

Given the 4th derivative of X, integrate four times to get X

1

s

1

s

1

s

1

s

XX'X''X'''X''''

Generate X''' according to the dynamics

s4X = U − b3s3X − b2s2X − b1sX − b0X

1

s

1

s

1

s

1

s

XX'X''X'''X''''

-b0

-b1

-b2

-b3

Now that you have X and its derivatives, create Y

Y = (a3s3 + a2s2 + a1s + a0)X

1

s

1

s

1

s

1

s

XX'X''X'''X''''

-b0

-b1

-b2

-b3

-b0

-b0

-b0

-b0

U

Y

x1x2x3x4
a0

a1

a2

a3

Controller Canonical Form for Y = 


a3s3+a2s2+a1s+a0

s4+b3s3+b2s2+b1s+b0


U

Express in matrix form

s













x1

x2

x3

x4













=













0 1 0 0

0 0 1 0

0 0 0 1

−b0 −b1 −b2 −b3

























x1

x2

x3

x4













+













0

0

0

1












U

Y =  a0 a1 a2 a3 X + [0]U

Controller canonical form has some nice properties:

The transfer function can be found by inspection: the numerator and

denominator polynomials appear in the A and C matrices

You can control (set to any value) all of the states with input, U.

Controller canonical form also has some of the worst numerical properties.

1

s

1

s

1

s

1

s

XX'X''X'''X''''

-b0

-b1

-b2

-b3

-b0

-b0

-b0

-b0

U

Y

x1x2x3x4
a0

a1

a2

a3

Observer Canonical Form

Given a system

sX = AX + BU

Y = CX + DU

the transfer function from U to Y is

Y = 
C(sI − A)−1B + DU

For a single-input single-output (SISO) system this is also

Y = 
C(sI − A)−1B + D

T

U

Y = 
B

T
(sI − AT

)
−1

CT + DT 
U

Another perfectly valid representation for a system is to let

AT → A

BT → C

CT → B

For example, the 4th-order system from before becomes

s













x1

x2

x3

x4













=













0 0 0 −b0

1 0 0 −b1

0 1 0 −b2

0 0 1 −b3

























x1

x2

x3

x4













+













a0

a1

a2

a3












U

Y =  0 0 0 1 X + [0]U

This is called observer canonical form: from the output (Y) you can

determine all of the states through differentiation. The block-diagram

representation for this system is:

1

s

1

s

1

s

1

s

U

Yx1 x2 x3 x4

-b0 -b1 -b2 -b3

a0 a1 a2 a3

Observer Canonical form for Y = 


a3s3+a2s2+a1s+a0

s4+b3s3+b2s2+b1s+b0


U

Cascade Form

If you have real poles, you can write the transfer function as

Y = 


a4+a3(s+p4)+a2(s+p3)(s+p4)+a1(s+p2)(s+p3)(s+p4)

(s+p1)(s+p2)(s+p3)(s+p4)


U

For this system, you could write it as four cascaded 1st-order systems

x1 = 


1
s+p1


U

x2 = 


1
s+p2


X1

x3 = 


1
s+p3


X2

x4 = 


1
s+p4


X3

Y = a4x4 + a3x3 + a2x2 + a1x1

The state-space model is

s













x1

x2

x3

x4













=













−p1 0 0 0

1 −p2 0 0

0 1 −p3 0

0 0 1 −p4

























x1

x2

x3

x4













+













1

0

0

0












U

Y =  a1 a2 a3 a4 X

1

s

1

s

1

s

1

s

U Y

-p1 -p2 -p3 -p4

x1 x2 x3 x4
a4

a3

a2

a1

Jordan (Diagonal) Canonical Form

Use partial fraction expansion to express

Y = 


a3s3+a2s2+a1s+a0

s4+b3s3+b2s2+b1s+b0


U

as

Y = 




c1

s+p1


 + 

c2

s+p2


 + 

c3

s+p3


 + 

c4

s+p4




U

Treat this as four coupled systems

x1 = 


c1

s+p1


U x2 = 


c2

s+p2


U

x3 = 


c3

s+p3


U x4 = 


c4

s+p4


U

with

Y = x1 + x2 + x3 + x4

In state-space

s













x1

x2

x3

x4













=













−p1 0 0 0

0 −p2 0 0

0 0 −p3 0

0 0 0 −p4

























x1

x2

x3

x4













+













c1

c2

c3

c4












U

Y =  1 1 1 1 X

Note:

Cascade and Jordan form have the best

numerical properties

They're also the hardest to get to

1

s

-p1

c1
x1

1

s

-p2

c2
x2

1

s

-p3

c3
x3

1

s

-p4

c4
x4

YU

Recap:

In state-space, a dynamic system is written as

sX = AX + BU

Y = CX + DU

with the transfer function from U to Y being

Y = 
C(sI − A)−1B + DU

{A, B, C, D} can be expressed several ways:

Controller canonical form

Observer canonical form

Cascade form

Jordan form

What is the relationship between each of these forms?

Similarity Transforms:

Let Z be a change of variable defined as

X = TZ

or

Z = T−1X

where T is an NxN non-singular matrix called the similarity transform.

Example:

X =










V1

V2

V3









Z =










V1 + V2

V2 + V3

V1 + V2 + V3









=










1 1 0

0 1 1

1 1 1









X

Substitute

sTZ = ATZ + BU

Y = CTZ + DU

or

sZ = T−1ATZ + T−1BU = AzZ + BzU

Y = CTZ + DU = CzZ + DzU

{A, B, C, D} is related to {Az, Bz, Cz, Dz} as

Az = T−1AT

Bz = T−1B

Cz = CT

Dz = D

Different canonical forms are related through a change of variable

i.e. through a similarity transform, T

Case 1: Converting to and from Jordan Form

This is the easiest transform. Almost by definition, the transformation matrix

is the Eigenvector matrix

For example, convert the following system to Jordan form:

sX =













−2.1 1 0 0

1 −2.1 1 0

0 1 −2.1 1

0 0 1 −1.1












X +













1

0

0

0












U

Y =  0 0 0 1 X + [0]U

In Matlab:

>> A = [-2.1,1,0,0;1,-2.1,1,0;0,1,-2.1,1;0,0,1,-1.1]

 -2.1000 1.0000 0 0

 1.0000 -2.1000 1.0000 0

 0 1.0000 -2.1000 1.0000

 0 0 1.0000 -1.1000

>> B = [1;0;0;0]

 1

 0

 0

 0

>> C = [0,0,0,1]

 0 0 0 1

>> D = 0;

>> [M,N] = eig(A)

M = eigenvectors

 -0.4285 -0.6565 0.5774 0.2280

 0.6565 0.2280 0.5774 0.4285

 -0.5774 0.5774 -0.0000 0.5774

 0.2280 -0.4285 -0.5774 0.6565

The similarity transform, T, is simply the eigenvector matrix:
>> T = M;

The system in state-variable Z becomes:

>> Az = inv(T)*A*T

 -3.6320 0 0 0

 0 -2.4470 0 0

 0 0 -1.1000 0

 0 0 0 -0.2210

>> Bz = inv(T)*B

 -0.4285

 -0.6565

 0.5774

 0.2280

>> Cz = C*T

 0.2280 -0.4285 -0.5774 0.6565

>> Dz = D

 0

This is Jordan form

 sZ =













−3.632

−2.4470

−1.1

−0.22












Z +













−0.4285

−0.6565

0.5774

0.2280












U

Y =  0.2280 −0.4285 −0.5774 0.6565 Z + [0]U

Note that the transfer function doesn't change:

>> Gx = ss(A,B,C,D);

>> zpk(Gx)

 1

(s+3.632) (s+2.447) (s+1.1) (s+0.2206)

>> Gz = ss(Az,Bz,Cz,Dz);

>> zpk(Gz)

 1

(s+3.632) (s+2.447) (s+1.1) (s+0.2206)

Case 2: Converting to Output and its Derivatives

Let Z be the output and its derivatives

Z =













y

y

y

y













=













C

CA

CA2

CA3












X = T−1X

then

>> T = inv([C; C*A; C*A*A; C*A*A*A])

 1.6510 7.0300 5.3000 1.0000

 1.3100 3.2000 1.0000 0

 1.1000 1.0000 0 0

 1.0000 0 0 0

{Az, Bz, Cz, Dz} become:

>> Az = inv(T)*A*T

 0 1.0000 0 0

 0 0 1.0000 0

 0 0 0 1.0000

 -2.1570 -13.2140 -17.1600 -7.4000

>> Bz = inv(T)*B

 0

 0.0000

 0

 1.0000

>> Cz = C*T

 1 0 0 0

>> Dz = D

 0

Note again that the eigenvalues don't change with a similarity transform
>> eig(A)'

 -3.6321 -2.4473 -1.1000 -0.2206

>> eig(Az)'

 -3.6321 -2.4473 -1.1000 -0.2206

nor does the transfer function
>> Gx = ss(A,B,C,D);

>> zpk(Gx)

 1

(s+3.632) (s+2.447) (s+1.1) (s+0.2206)

>> Gz = ss(Az,Bz,Cz,Dz);

>> zpk(Gz)

 1

(s+3.632) (s+2.447) (s+1.1) (s+0.2206)

Case 3: Converting to a difference in states:

Let the states be

Z =













x1 − x2

x2 − x3

x3 − x4

x4













=













1 −1 0 0

0 1 −1 0

0 0 1 −1

0 0 0 1












X = T−1X

In Matlab
>> Ti = [1,-1,0,0;0,1,-1,0;0,0,1,-1;0,0,0,1]

 1 -1 0 0

 0 1 -1 0

 0 0 1 -1

 0 0 0 1

>> T = inv(Ti)

 1 1 1 1

 0 1 1 1

 0 0 1 1

 0 0 0 1

>> Az = inv(T)*A*T

 -3.1 0 -1.0 -1.0

 1.0 -2.1 1.0 0

 0 1.0 -2.1 0

 0 0 1.0 -0.1

>> Bz = inv(T)*B

 1

 0

 0

 0

>> Cz = C*T

 0 0 0 1

>> Dz = D

 0

Again, the eigenvalues don't change with a similarity transform
>> eig(A)'

 -3.6321 -2.4473 -1.1000 -0.2206

>> eig(Az)'

 -3.6321 -2.4473 -1.1000 -0.2206

and the transfer function doesn't change

>> Gx = ss(A,B,C,D);

>> zpk(Gx)

 1

(s+3.632) (s+2.447) (s+1.1) (s+0.2206)

>> Gz = ss(Az,Bz,Cz,Dz);

>> zpk(Gz)

 1

(s+3.632) (s+2.447) (s+1.1) (s+0.2206)

Conclusion

There are an infinite many ways to represent a system in state-space. All

related by a similarity transform.

Each transformed system has the same eigenvalues: how you represent the

system doesn't affect how the energy in the system moves about.

It may be difficult to determine what the similarity transform is that relates

two similar systems.

