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Controllability and Observability

Controllability:  The ability to drive a system to an arbitrary state in finite time.

Observability:  The ability to determine the system's state from the output and its

derivatives.

If a system is controllable, it means you can stabilize it.

You can place the poles anywhere you like using full-state feedback

ECE 463 Week 6 - 7

If a system is observable, it means you can build a state estimator

You can build a full-order observer

ECE 463 week 8 - 9



Controllable & Observabile

Example in Jordan form: 

x1 is controllable and Observable

x2 is controllable but not observable

x3 is obserevable but not controllable

x4 is neither controllable nor observable
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Controllability & Observability by Inspection

If there is no pole / zero cancellation, a system is both controllable and  observable.

If the transfer function is the same order as the system, the system is both controllable

and observable.

Example:

The previous system is 4th order (4 states)

The transfer function is 1st order

Y = 
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The system is either uncontrollable,

unobservable, or both.
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Pole Zero Cancellation

If a zero which cancels a pole comes before the pole, that state is uncontrollable.

3(s+2)

(s+10)

100

(s+2)(s+5)

The pole at -2 is uncontrollable due to zero canceling the pole before the pole

If a zero which cancels a pole comes after the pole, that state is unobservable.
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The pole at -2 is unobservable due to zero canceling the pole after the pole



Controllability Matrix:

Theorem:  If

rank B AB A2B ... AN−1B 

 = N

the system is controllable.

Proof:  This is easier to see in discrete time. Assume you have a 4th-order

discrete-time system:

zX = AX + BU

If the input, U, can drive the system to any arbitrary state, then the system is

controllable.  



Assume X(0) = 0.  X at k = 4 is then  

X(0) = X0

X1 = AX0 + BU0

X2 = AX1 + BU1 = A2X0 + ABU0 + BU1

X3 = AX2 + BU2 = A3X0 + A2BU0 + ABU1 + BU2

X4 = AX3 + BU3 = A4X0 + A3BU0 + A2BU1 + ABU2 + BU3

or in matrix form

X4 − A4X0 =  B AB A2B A3B 
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If the matrix (termed the controllability matrix) is full rank

ρ B AB A2B A3B  = 4

then you can solve for U0..U3.

Translation:  

You can drive the system to any arbitrary

state at k=4 using in puts {U0..U3}

The system is controllable.
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Calley Hamilton Theorem

How many terms do you need to include in the controllability matrix?

C =  B AB A2B A3B . .. 

The Calley Hamilton theorem states that any matrix satisfies its own

characteristic equation. (i.e. denominator polynomial.) 

Example:

A = [-2,1,0,0;1,-2,1,0;0,1,-2,1;0,0,1,-1]

    -2     1     0     0

     1    -2     1     0

     0     1    -2     1

     0     0     1    -1

P = poly(eig(A))

P =    1.0000    7.0000   15.0000   10.0000    1.0000



The characteristic equation of A is

s4 + 7s3 + 15s2 + 10s + 1 = 0

The Calley Hamilton theorem states that any matrix satisfies its own

characteristic equtation:

A4 + 7A3 + 15A2 + 10A + I = 0

Checking in Matlab:

A^4 + 7*A^3 + 15*A^2 + 10*A + 1*A^0

     0     0     0     0

     0     0     0     0

     0     0     0     0

     0     0     0     0



Translation:

 is linearly dependent upon A4 I, A, A2, A3

So is  and so onA5

Adding  won't change the rank of the controllability matrixA4

When forming the controllability matrix for an Nth order system, you can stop

after adding N terms.  Hence

An Nth order system is controllable if

rank B AB A2B ... AN−1B 

 = N



Observability

Observable:

You can determine what the states are just using data from the input, the output, and

their derivatives.

 This will be important later on in the course when we start designing state estimators:
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Observability Matrix

If the observability matrix is full rank, then the system is observable
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If a system is observable, you can determine the systems states from the system's

output

If a system is not observable, then at least one state does not contribute to the output

you're looking at.  This means there is no information about that state in the output

and you cannot determine the value of that state.



Proof: Assume a 4th order system with U=0

sX = AX + BU

y = CX

The derivatives of y are

sy = s(CX) = CAX

s2y = s(CAX) = CA2X

s3y = s(CA2X) = CA3X

Putting this in matrix form
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If the observability matrix is full rank:
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then you can solve for X given only the output, y, and its derivatives.

This means the system is observable.

Again, the Calley Hamilton theorem tells you that you can stop at AN-1



Rank, Determinant, and Eigenvalues

There are several ways to determine if a matrix is

full rank in Matlab.

Rank():  The Matlab command rank determines

how many linearly independent columns a matrix

has.  This is a Boolean test:  each eigenvector

either is or is not excited.

Example:  4-Stage RC filter

The rank of the controllability matrix is 4

A 4-stage RC filter is controllable



Rank & Eigenvectors:

If the B matrix includes all four

eigenvetors, the system is

controllable:

If B is missing one eigenvector, the

system is not controllable.

This is a binary test:

Even a small contribution of an

eigenvector counts



Determinant and Eigenvalues

If all eigenvalues are non-zero, the matrix is full rank (the system is controllable)

If an eigenvalue is close to zero, the system is weakly controllable / observable.

The determinant is the product of the eigenvalues

If the determinant is not zero, the matrix is full rank (the system is controllable)

If the determinant is close to zero, the system is weakly controllable / observable.

An eigenvalue or determinant close to zero tells you that one or modes is  very

difficult to control from the input.

Sidelight:  The trace is the sum of the eigenvalues

Interesting, but doesn't tell you much.



Example:  Consider the 4-stage RC filter

B includes all four eigenvectors:

The system is controllable

The rank of the controllability matrix is 4

The system is strongly controllable

The determinent is far from zero

All four eigenvalues are far from zero



B contains only 3 eigenvectors

The system is uncontrollable

The rank of the controllability matrix is 3

The determinant is zero

One eigenvalue is zero



B contains 4 eigenvectors

One is very small

The system is weakly controllable

The system is controllable

The rank is 4

The system is weakly controllable

The determinant is close to zero

One eigenvalue is close to zero
          



PBH Test

A system is controllable if

ρ[A − λI, B] = N

for all .  λ

A system is observable if

ρ
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The PBH Rank Test tells you 

which modes are controllable / observable

Which modes are not



Note:   is full rank everywhere except when  is an eigenvalue of A.[A − λI] λ

You only need to check at the eigenvalues.

If the rank is not N, then that mode is uncontrollable / unobservable.

Example:  4-stage RC filter where B only includes 3 eigenvectors:

The 4th eigenvalue is uncontrollable

A = [-2,1,0,0;1,-2,1,0;0,1,-2,1;0,0,1,-1];

B = M(:,1) + M(:,2) + M(:,3);

P = eig(A);

rank([A - P(1)*eye(4,4), B])

ans =     4

rank([A - P(2)*eye(4,4), B])

ans =     4

rank([A - P(3)*eye(4,4), B])

ans =     4

rank([A - P(4)*eye(4,4), B])

ans =     3

This also works with the C matrix and observabilty:



Mi = inv(M);

C = Mi(1,:) + Mi(2,:) + Mi(3,:);

rank([ C ; A - P(1)*eye(4,4) ] )

ans =     4

rank([ C ; A - P(2)*eye(4,4) ] )

ans =     4

rank([ C ; A - P(3)*eye(4,4) ] )

ans =     4

rank([ C ; A - P(4)*eye(4,4) ] )

ans =     3

The 4th eigenvalue is not observable.



Example 1:  RC Filter

Is the following system controllable and observable?

heat equation with four states

+

-
U

X1 X2 X3 X4 = Y
1 1 1 1

1 1 1 1

1F 1F 1F 1F

4-Stage RC filter



The dynamics are
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The controlability and observability

matricies are full rank

The system is controllable

The sytem is observable



Example 2: Is a cart and pendulum controllable and observable?

s













x

θ

x

θ













=













0 0 1 0

0 0 0 1

0 −4.9 0 0

0 14.7 0 0

























x

θ

x

θ













+













0

0

0.5

−0.5












F +













0

0

−0.5

1.5












T

(x2, y2)
m2 = 1kg

m1 = 2kg

(x1, y1)

F

Q

x

L = 1m



The system is controllable from F

It is possible to balance a yardstick on your

hand

The sustem is not controllable from T

Something can't be controlled

What?

Use the PBH test to determine what can't be

controlled.



PBH Test

The first and second modes are not controllable

Eigenvalue = 0

Eigenvector = {position, velocity}

You can't control the cart's position or speed just

by applying a torque on the beam



Observability

The system is observable from position (x)

You can determine all four states just by

looking at position

The system is strongly obsevable from

position

All eigenvalues of the observability matrix are

far from zero

The determinenat far from zero

Surprising, but that's what the math tells you



The system is not observable from angle

Rank = 2

Two modes can't be seen

The system is not observable from velocity

Rank = 3

One mode can't be seen



PBH Rank test tells you which modes are not

observable

Measure angle

Position (first eigenvector) is not observable

Velocity (second eigenvector) is not observable

rank([C ; A - P(1)*eye(4,4)])

   ans =     3

rank([C ; A - P(2)*eye(4,4)])

   ans =     3

rank([C ; A - P(3)*eye(4,4)])

   ans =     4

rank([C ; A - P(4)*eye(4,4)])

   ans =     4



Summary

A system is controllable if the input can drive you to an arbitrary state in fininte

time

A system is observable if you can determine the states using only the output and

its derivatives

Several tests can be used to determine if a system is controllable or observable:

Rank of Controllability / Observability Matrix

PBH test

B & C matrix contains all eigenvectors

B & C matrix has non-zero entries when expressed in Jordan form


