Full State Feedback

NDSU ECE 463/663

Lecture #12 Inst: Jake Glower

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Feedback

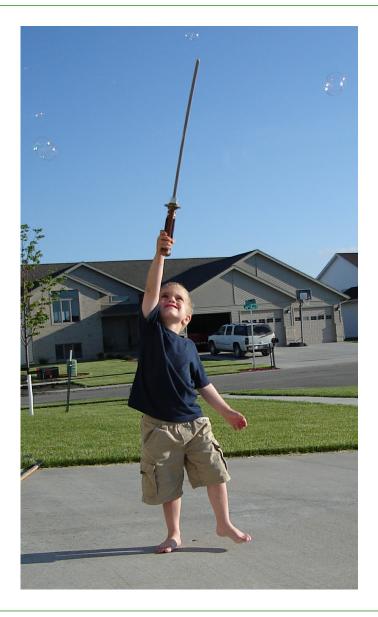
A system's dynamics determine how the system behaves.

Feedback is a tool which allows you to change the dynamics of a system.

For example, both walking and riding a bike are unstable without feedback.

- With practice, you learn to stand and walk
- With practice, you learn how to ride a bike.

As you practice, you figuring out how to adjust the input based upon the output



The Importance of Feedback

csinvesting.org/wp-content/uploads/2015/05/Boom-and-Bust1.png

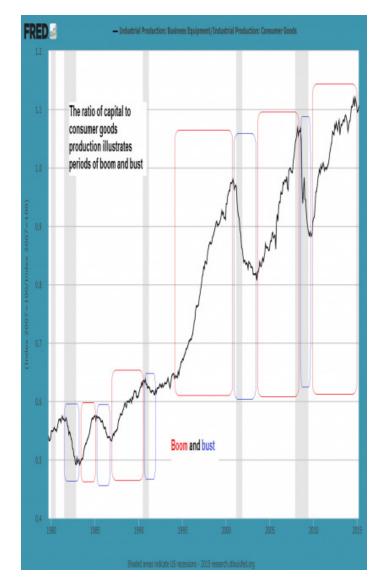
- Many systems are open-loop unstable
- Feedback is what makes them work

Economics

- Boom & bust cycles date back to the Roman Empire
- During good times, people buy more, companies sell more, companies hire more people, people buy more, etc.
- During bad times, people buy less, companies start laying off people, people buy even less

Federal Reserve

- Provides feedback to keep the growth rate at 3%
- Money supply, interest rates are the control inputs



Planetary Weather

www.digitalartsonline.co.uk

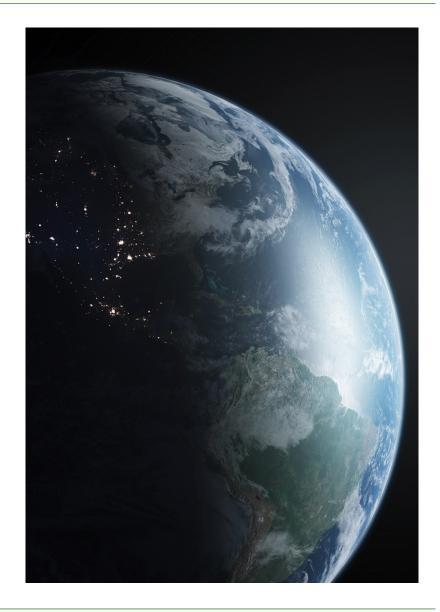
Cooling Cycle

- As the planet cools, more snow accumulates
- More snow reflects more sunlight, cooling the planet further
- Can (and did) produce a runaway ice age

Warming Cycle

- Warmer weather melts ice
- Less ice means more sunlight is absorbed
- Which warms the planet further
- Can (and did) produce runaway heating

One thought is that life provides the feedback meachanism to stabilize the climate



Sidelight: Why did civilization take off 10,000 years ago?

- The last 10,000 years have been unusually consistent
- Dogs were domesticated 10,000 years ago
- Coincidence?



Glen Fergus https://commons.wikimedia.org/w/index.php?curid=31736468

Walking & Running

https://www.animalsandenglish.com/beetles-bugs--insects.html funnypicture.org/wallpaper/2015/05/funny-cat-running-32-desktop-background.jpg

Crawling is open-loop stable

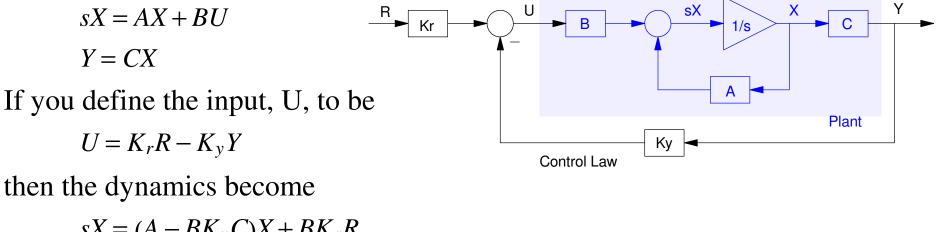
- 3 feet on the ground at all times
- gaits used by insects
- gait used by animals at low speed

Faster gaits are open-loop unstable

- Trot, Pace, Gallop, Bound
- Evolutionary advantage

Output Feedback

Assume you have a system



 $sX = (A - BK_yC)X + BK_rR$ Y = CX

The eigenvalues of (A - BKyC) define the closed-loop systems dynamics

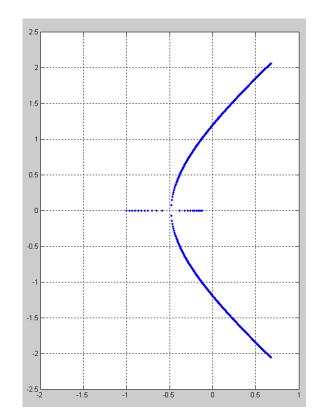
- With 1 degree of freedom (Ky), the roots follow a 1-dimensional path
- Termed 'the root locus' in ECE 461: Controls Systems

Example: 4-stage RC filter

• Or heat flow in a 1-dimensional metal rod

$$sX = \begin{bmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} X + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} U$$
$$Y = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} X$$

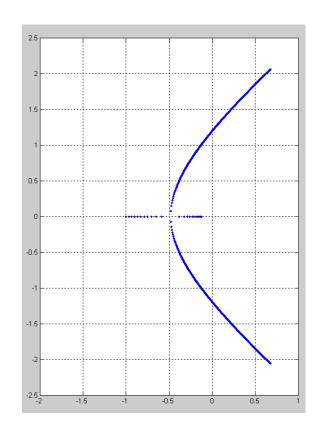
Plot the roots of (A - BKyY) for 0 < Ky < 100



Note

- When Ky = 0, the roots are the eigenvalues of A
- As Ky increases, the roots shift
 - Initially, the system speeds up
 - Then the poles become complex,
 - Then they go unstable.

Ky	0	0.1	1	10
poles	- 3.532	- 3.522	- 3.414	- 3.338 + j0.882
	- 2.347	- 2.375	- 2.618	- 3.338 - j0.882
	- 1.	- 0.966	- 0.585	- 0.161 + j0.946
	- 0.120	- 0.136	- 0.381	- 0.161 - j0.946



What is the "best" feedback gain?

• Topic of ECE 461 Classical Controls

Depends upon what you mean by "best"

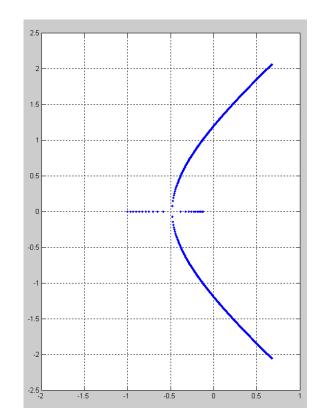
- High gains are good
 - Faster response
 - Better tracking
- Too much gain produces too much overshoot

The root locus plot gives you a shopping list

• Any pole on the root locus is achievable

Procedure:

- Pick your designed closed-loop pole
 - Has to be on the root locus plot
- Compute the gain at that point
 - From ECE 461: GK(s) = -1
 - Not important for ECE 463 Modern Control



Example: Pick Ky = 10 to place the closed-loop dominant pole at

s = -0.161 + j0.946

Find Kr to make the DC gain equal to 1.000

• output tracks the set point

The dynamics become:

 $sX = (A - BK_yC)X + BK_rR$ Y = CXAt DC, s = 0 $0 = (A - BK_yC)X + BK_rR$ $X = -(A - BK_yC)^{-1}BK_rR$ $Y = -C(A - BK_yC)^{-1}BK_rR$ Pick Kr so that

 $-C(A - BK_yC)^{-1}BK_r = 1$

→ MATLAB 7.12.0 (R2011a)						
File	Edit Debug Desktop Window Help 🚰 🔏 🐂 🛱 🍠 🍽 하 😭 🖹 🕢 Current Folder: C:\Documents					
Shortcuts 🕐 How to Add 💽 What's New						
	>> Ky = 10;					
	>> DC = -C*inv(A - B*Ky*C)*B					
	DC =					
	0.0909					
	>> Kr = 1/DC					
	Kr =					
	1 1					
	11					
fr	>>					
JĄ						

A feedback control law would then be

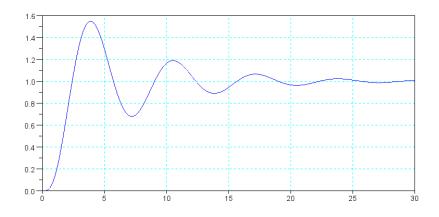
 $U = K_r R - K_y Y$ U = 11R - 10Y

The step response of the closed-loop system in Matlab is from:

```
G = ss(A-B*Ky*C, B*Kr, C, 0);
t = [0:0.01:30]';
y = step(G,t);
plot(t,y)
```

Note that

- The dominant pole is s = -0.161 + j0.946, and
- The DC gain is one



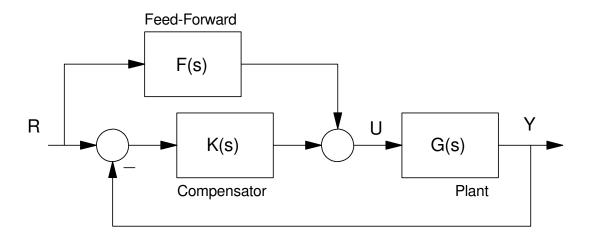
Comments on Output Feedback

With only one degree of freedom (Ky), the closed-loop poles follow a one-dimensional surface

- The root locus plot
- Defines what responses are possible by adjusting Ky

If you wand a different response add a pre-filter and a feedforward term

- Lead, Lab, PID compensators
- Covered in ECE 461 Controls Systems



Full-State Feedback:

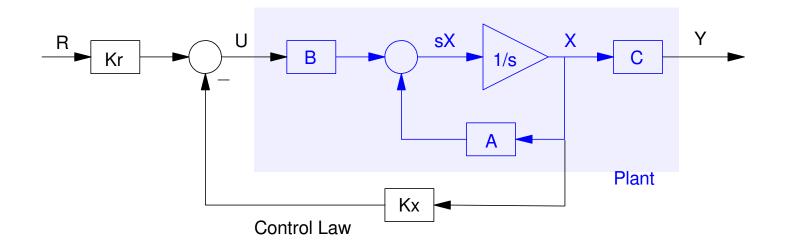
Instead of just feeding back the output (Y), feed back the states (X)

 $U = K_r R + K_x X$

For an Nth-order system you now have N+1 degrees of freedom

- Kx has N terms
- Kr has 1 term

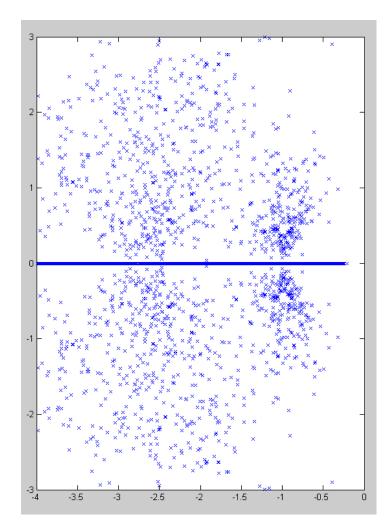
This means you can usually place the poles and DC gain anywhere



Problem: How do you find Kx and Kr?

Doesn't really help

• Too many degrees of freedom



Finding Kx and Kr:

Option 2: Determine the closed-loop dynamics

• The eigenvalues of (A - B Kx)

$$A - BKx = \begin{bmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} k_1 & k_2 & k_3 & k_4 \end{bmatrix}$$

$$A - BKx = \begin{bmatrix} -2 - k_1 & 1 - k_2 & -k_3 & -k_4 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

The eigenvalues are a function of {k1, k2, k3, k4}

$$p(s) = \det(sI - A)$$

$$sI - (A - BK_x) = \begin{bmatrix} s & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & s & 0 \\ 0 & 0 & 0 & s \end{bmatrix} - \begin{bmatrix} -2 - k_1 & 1 - k_2 & -k_3 & -k_4 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\det(sI - A) = \begin{vmatrix} s + 2 + k_1 & -1 + k_2 & k_3 & k_4 \\ -1 & s + 2 & -1 & 0 \\ 0 & -1 & s + 2 & -1 \\ 0 & 0 & 1 & s + 1 \end{vmatrix}$$

- This gives a 4th-order polynomial depending on {k1, k2, k3, k4}
- This method bogs down when you get past a 2nd-order system

There has to be a better way

• There is.... stay tuned...

Controllability:

With full state feedback, you have

- N equations (N eigenvalues to place) with
- N degrees of freedom (the gains in Kx)

Can all N eigenvalues be placed anywhere?

• Is there a solution for Kx given the desired closed-loop eigenvalues?

Answer

- Sometimes yes
- Sometimes no

No: Case 1

Assume B corresponds to an eigenvector.

 $B = \Lambda_1$

Then, if you use a similarity transform $T = \Lambda$

where Λ is the eigenvector matrix, then the system in diagonal form will be $sZ = T^{-1}ATZ + T^{-1}BU$ $sZ = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{bmatrix} Z + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} U$ With full-state feedback

$$U = -K_z Z + K_r R$$
$$U = -\left[k_1 \ k_2 \ k_3 \ k_4 \ \right] Z + K_r R$$

results in

$$sZ = \begin{bmatrix} \lambda_1 - k_1 - k_2 - k_3 - k_4 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix} Z + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} K_r R$$

Three eigenvalues are fixed, only one changes

• No - you cannot place all 4 poles anywhere if B is an eigenvector

Matlab Example:

• Let B be the first eigenvector:

>> A = [-2,1,0,0;1,-2,1,0;0,1,-2,1;0,0,1,-1] >> [M,V] = eig(A)

-0.4285	-0.6565	0.5774	0.2280
0.6565	0.2280	0.5774	0.4285
-0.5774	0.5774	-0.0000	0.5774
0.2280	-0.4285	-0.5774	0.6565

>> B = M(:, 1)

-0.4285 0.6565 -0.5774 0.2280

>> eig(A)

-3.5321 -2.3473 -1.0000 -0.1206 If you guess random feedback gains, only one pole moves:

>> Kx = 10 * rand(1, 4)Kx = 8.1472 9.0579 1.2699 9.1338 >> eig(A-B*Kx) -7.3371 -2.3473-1.0000-0.1206>> Kx = $10 \times rand(1, 4)$ 6.3236 0.9754 2.7850 5.4688 >> eig(A-B*Kx) -2.3473-0.1206 -1.0000-1.1017

No: Case 2:

Assume B contans all eigenvectors but one:

 $B = \Lambda_1 + \Lambda_2 + \Lambda_3$

Converting the system to Jordan form results in

$$sZ = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{bmatrix} Z + \begin{bmatrix} a \\ b \\ c \\ 0 \end{bmatrix} U$$

Even with full-state feedback, the pole at λ_4 will not move

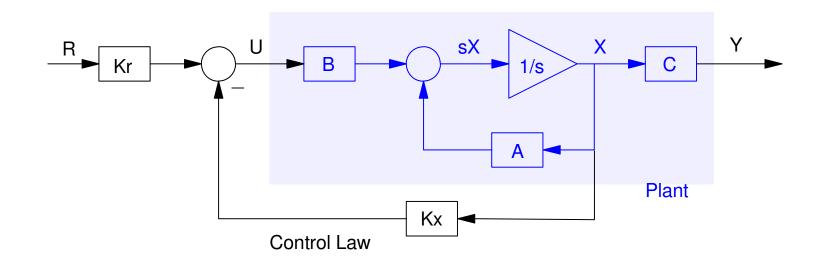
When can you place N poles anywhere?

The B matrix must contain all N eigenvectors

- This is another way of saying the sytem must be controllable
- (PBH rank test)

Problem: How to find Kx and Kr?

• Tomorrow's lecture...



Summary

Feedback is all important

- It allows you to use systems which are open-loop unstable
- It allows you to improve the response of a system
- It allows you to force a system to track a set point

Following Lectures

• How to determine the feedback gains to meet your design requirements