Full State Feedback

NDSU ECE 463/663
Lecture #12
Inst: Jake Glower

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions




Feedback

A system's dynamics determine how the
system behaves.

Feedback is a tool which allows you to
change the dynamics of a system.

For example, both walking and riding a
bike are unstable without feedback.

« With practice, you learn to stand and walk
- With practice, you learn how to ride a bike.

As you practice, you figuring out how to
adjust the input based upon the output




The Importance of Feedback

csinvesting.org/wp-content/uploads/2015/05/Boom-and-Bust1.png
- Many systems are open-loop unstable

- Feedback is what makes them work Tentodlogal
. consumer oods
Economics e

periods of boom and bust

« Boom & bust cycles date back to the Roman
Empire

 During good times, people buy more,
companies sell more, companies hire more
people, people buy more, etc.

- During bad times, people buy less, companies
start laying off people, people buy even less
Federal Reserve

 Provides feedback to keep the growth rate at
3%

- Money supply, interest rates are the control
inputs




Planetary Weather

www.digitalartsonline.co.uk

Cooling Cycle
« As the planet cools, more snow
accumulates

« More snow reflects more sunlight, cooling
the planet further

« Can (and did) produce a runaway ice age
Warming Cycle

- Warmer weather melts ice

« Less ice means more sunlight is absorbed

« Which warms the planet further

« Can (and did) produce runaway heating

One thought is that life provides the
feedback meachanism to stabilize the
climate




Sidelight: Why did civilization take off 10,000 years ago?
« The last 10,000 years have been unusually consistent
« Dogs were domesticated 10,000 years ago
- Coincidence?
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Walking & Running

https://www.animalsandenglish.com/beetles-bugs--insects.html
funnypicture.org/wallpaper/2015/05/funny-cat-running-32-desktop-background.jpg

Crawling is open-loop stable
- 3 feet on the ground at all times
- gaits used by insects
- gait used by animals at low speed

Faster gaits are open-loop unstable
- Trot, Pace, Gallop, Bound
 Evolutionary advantage




Output Feedback

Assume you have a system

Y=CX
If you define the input, U, to be

sX =AX +BU R L .ﬁ = .@X_. :

A

Plant

U=K.R-K,Y <y =

Control Law

then the dynamics become
sX = (A—-BK,C)X + BK R
Y=CX

The eigenvalues of (A - BKyC) define the closed-loop systems dynamics
« With 1 degree of freedom (Ky), the roots follow a 1-dimensional path
« Termed 'the root locus' in ECE 461: Controls Systems




Example: 4-stage RC filter

« Or heat flow 1n a 1-dimensional metal rod
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Plot the roots of (A - BKyY) for 0 < Ky < 100 o

(-2,1,0,0;1,-2,1,0;0,1,-2,1;0,0,1,-1]
[lIOIOIO] '
[0,0,0,1]

y = [0:0.1:100]"

= [1;
or i=1:length (Ky)

A
B
C
K
R
f

R = [R; eig(A - B*Ky(i)*C)']; S
end
plot (real (R),1imag(R), 'b.");




Note
« When Ky = 0, the roots are the eigenvalues of A

As Ky increases, the roots shift
- Initially, the system speeds up
« Then the poles become complex,
- Then they go unstable.

Ky 0 0.1 1 10 af

poles - 3.532 - 3.522 - 3.414 - 3.338 +j0.882 ol
- 2.347 -2.375 -2.618 - 3.338 - j0.882

- 1. - 0.966 - 0.585 - 0.161 +j0.946 4

0420  -0.136  -0.381  -0.161-j0.946




What is the "best” feedback gain?
« Topic of ECE 461 Classical Controls

Depends upon what you mean by "best"

- High gains are good
- Faster response

- Better tracking
« Too much gain produces too much overshoot

The root locus plot gives you a shopping list
« Any pole on the root locus 1s achievable

Procedure:
« Pick your designed closed-loop pole

- Has to be on the root locus plot

« Compute the gain at that point
- From ECE 461: GK(s) = -1
- Not important for ECE 463 Modern Control




Example: Pick Ky = 10 to place the closed-loop dominant pole at

s=-0.161 +30.946
Find Kr to make the DC gain equal to 1.000

« output tracks the set point

The dynamics become:
sX = (A— BK,C)X + BK,R
Y=CX

AtDC,s=0
0= (A—-BK,C)X+BK,R
X =—(A-BK,C) ' BK,R
Y=-C(A - BK,C) 'BK,R

Pick Kr so that
~C(A-BK,C)"'BK, =1

J) MATLAB 7.12.0 (R2011a)

File Edit Debug Deskiop ‘Window Help

ﬁ_“l = & ._"f] ot B u mﬁ ﬂ & | Current Folder: | C:\Documents |

shortcuks 2] How ko Add (2] what's Mew

>> Ky = 107
>> DC = -C*inv (A - B*Ky*C)*B
DC =

0.0205

>> Kr = 1/DC

Er =

11

fx >> |




A feedback control law would then be
U=K,R-K,Y
U=11R-10Y

The step response of the closed-loop system in Matlab is from:
G = ss(A-B*Ky*C, B*Kr, C, 0);

t = [0:0.01:301°";
y = step(G,t);
plot (t,y)

Note that

« The dominant pole is s =- 0.161 + j0.946, and
« The DC gain 1s one




Comments on Output Feedback
With only one degree of freedom (Ky), the closed-loop poles follow a
one-dimensional surface

« The root locus plot
« Defines what responses are possible by adjusting Ky

If you wand a different response add a pre-filter and a feedforward term
- Lead, Lab, PID compensators
« Covered in ECE 461 Controls Systems

Feed-Forward

Compensator Plant




Full-State Feedback:

Instead of just feeding back the output (Y), feed back the states (X)
U=K,R+K,X

For an Nth-order system you now have N+1 degrees of freedom

« Kx has N terms
« Krhas 1 term

This means you can usually place the poles and DC gain anywhere

R u sX
—>Kr—>g>—>|3 —» C —»

Plant

Control Law




Problem: How do you find Kx and Kr?
Option 1: Trial and Error (Monte Carlo)

for 1i=1:1000
Kx = rand(1,4)*100;
R = eig(A — B*Kx);
plot (real (R),imag(R), 'bx")
end

~e

Doesn't really help

« Too many degrees of freedom




Finding Kx and Kr:

Option 2: Determine the closed-loop dynamics
« The eigenvalues of (A - B Kx)

2100
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The eigenvalues are a function of {k1, k2, k3, k4 }
p(s) =det(s[—A)

5000 | | =2—ky 1=ky k3 k4 |
J—(A—BK)=| 0500 |_| 1 2 1 0
00s0 0 1 =2 1
1 000s| | O 0 1 -1 |
s+2+ky —1+ky ks ka
~1 s+2 -1 0
det(sI— A) =
etsi=4) 0 1 s+2 -1
0 0 1 s+1

« This gives a 4th-order polynomial depending on {kl, k2, k3, k4 }

« This method bogs down when you get past a 2nd-order system
There has to be a better way

« There is.... stay tuned...




Controllability:
With full state feedback, you have

« N equations (N eigenvalues to place) with
« N degrees of freedom (the gains in Kx)

Can all N eigenvalues be placed anywhere?
- Is there a solution for Kx given the desired closed-loop eigenvalues?

Answer
« Sometimes yes
« Sometimes no




No: Case 1
Assume B corresponds to an eigenvector.
B=A

Then, if you use a similarity transform
T=A

where Ais the eigenvector matrix, then the system in diagonal form will be
sZ=T'ATZ+T'BU

X 0 0 0 1

0X O 0 0
/ = /+ U
> 00X 0 0

000N |O]




With full-state feedback
U=-K.Z+K,R
U=~ ki ky ks ks |Z+K.R

results in
N —ky —ky —ks —ks | | 1]
Ao 0
7= Z+| ° KR
> As 0
i Ao | [ O

Three eigenvalues are fixed, only one changes
« No - you cannot place all 4 poles anywhere if B 1s an eigenvector




Matlab Example:

- Let B be the first eigenvector:

>> A = [_2/ 11010;11_2/ 110;0111_211;0101 11_1}
>> [M,V] = eig(A)

—0.4285 —0.6565 0.5774 0.2280
0.6565 0.2280 0.5774 0.4285
-0.5774 0.5774 —-0.0000 0.5774
0.2280 -0.4285 -0.5774 0.6565

> B = M(:,1)

—-0.4285
0.6565
-0.5774
0.2280

>> eig (A)

-3.5321
-2.3473
-1.0000
-0.1206




If you guess random feedback gains, only one pole moves:

>> Kx = 10*rand (1, 4)
Kx = 8.1472 9.0579 1.2699 9.1338

>> eilg (A-B*Kx)

-7.3371
-2.3473
-1.0000
-0.1206

>> Kx = 10*rand(1,4)
6.3236 0.9754 2.7850 5.4688

>> eig (A-B*Kx)

-2.3473
-0.1206
-1.0000
-1.1017




No: Case 2:

Assume B contans all eigenvectors but one:
B=A{+A>+ A3

Converting the system to Jordan form results in
M 000 |

da
0% O 0 b
/ = /Z+ U
> 00X 0 ¢
00 0A]| |O]

Even with full-state feedback, the pole at A4 will not move




When can you place N poles anywhere?

The B matrix must contain all N eigenvectors

« This 1s another way of saying the sytem must be controllable

- (PBH rank test)

Problem: How to find Kx and Kr?

« Tomorrow's lecture...

—»CP_U—>B

Control Law

Kx

sX

Plant




Summary

Feedback 1s all important
- It allows you to use systems which are open-loop unstable
- It allows you to improve the response of a system
- It allows you to force a system to track a set point

Following Lectures
« How to determine the feedback gains to meet your design requirements




