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Feedback

A system's dynamics determine how the

system behaves.  

Feedback is a tool which allows you to

change the dynamics of a system.

For example, both walking and riding a

bike are unstable without feedback.

With practice, you learn to stand and walk

With practice, you learn how to ride a bike.

As you practice,  you figuring out how to

adjust the input based upon the output



The Importance of Feedback
csinvesting.org/wp-content/uploads/2015/05/Boom-and-Bust1.png

Many systems are open-loop unstable

Feedback is what makes them work

Economics

Boom & bust cycles date back to the Roman

Empire

During good times, people buy more,

companies sell more, companies hire more

people, people buy more, etc.

During bad times, people buy less, companies

start laying off people, people buy even less

Federal Reserve

Provides feedback to keep the growth rate at

3%

Money supply, interest rates are the control

inputs



Planetary Weather
www.digitalartsonline.co.uk

Cooling Cycle

As the planet cools, more snow

accumulates

More snow reflects more sunlight, cooling

the planet further

Can (and did) produce a runaway ice age

Warming Cycle

Warmer weather melts ice

Less ice means more sunlight is absorbed

Which warms the planet further

Can (and did) produce runaway heating

One thought is that life provides the

feedback meachanism to stabilize the

climate



Sidelight:  Why did civilization take off 10,000 years ago?

The last 10,000 years have been unusually consistent

Dogs were domesticated 10,000 years ago

Coincidence?

Glen Fergus https://commons.wikimedia.org/w/index.php?curid=31736468



Walking & Running
https://www.animalsandenglish.com/beetles-bugs--insects.html

funnypicture.org/wallpaper/2015/05/funny-cat-running-32-desktop-background.jpg

Crawling is open-loop stable

3 feet on the ground at all times

gaits used by insects

gait used by animals at low speed

Faster gaits are open-loop unstable

Trot, Pace, Gallop, Bound

Evolutionary advantage



Output Feedback

Assume you have a system

sX = AX + BU

Y = CX

If you define the input, U, to be

U = KrR − KyY

then the dynamics become

sX = (A − BKyC)X + BKrR

Y = CX

The eigenvalues of (A - BKyC) define the closed-loop systems dynamics

With 1 degree of freedom (Ky), the roots follow a 1-dimensional path

Termed 'the root locus' in ECE 461: Controls Systems
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Example:  4-stage RC filter

Or heat flow in a 1-dimensional metal rod
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Plot the roots of (A - BKyY) for 0 < Ky < 100

A = [-2,1,0,0;1,-2,1,0;0,1,-2,1;0,0,1,-1]

B = [1;0;0;0]

C = [0,0,0,1]

Ky = [0:0.1:100]';

R = [];

for i=1:length(Ky)

   R = [R; eig(A - B*Ky(i)*C)'];

   end

plot(real(R),imag(R),'b.');



Note

When Ky = 0, the roots are the eigenvalues of A

As Ky increases, the roots shift

Initially, the system speeds up

Then the poles become complex,

Then they go unstable.

Ky 0 0.1 1 10

poles  - 3.532    - 3.522    - 3.414    - 3.338 + j0.882  

  - 2.347    - 2.375    - 2.618    - 3.338 - j0.882  

  - 1.          - 0.966    - 0.585    - 0.161 + j0.946  

  - 0.120    - 0.136    - 0.381    - 0.161 - j0.946  



What is the "best" feedback gain?
Topic of ECE 461 Classical Controls

Depends upon what you mean by "best"

High gains are good

- Faster response

- Better tracking

Too much gain produces too much overshoot

The root locus plot gives you a shopping list

Any pole on the root locus is achievable

Procedure:

Pick your designed closed-loop pole

- Has to be on the root locus plot

Compute the gain at that point

- From ECE 461:  GK(s) = -1

- Not important for ECE 463 Modern Control



Example:  Pick Ky = 10 to place the closed-loop dominant pole at 

s = - 0.161 + j0.946  

Find Kr to make the DC gain equal to 1.000

output tracks the set point

The dynamics become:

sX = (A − BKyC)X + BKrR

Y = CX

At DC, s = 0

0 = (A − BKyC)X + BKrR

X = −(A − BKyC)
−1

BKrR

Y = −C(A − BKyC)
−1

BKrR

Pick Kr so that

−C(A − BKyC)
−1

BKr = 1



A feedback control law would then be

U = KrR − KyY

U = 11R − 10Y

The step response of the closed-loop system in Matlab is from:
G = ss(A-B*Ky*C, B*Kr, C, 0);

t = [0:0.01:30]';

y = step(G,t);

plot(t,y)

Note that

The dominant pole is s = - 0.161 + j0.946, and

The DC gain is one



Comments on Output Feedback

With only one degree of freedom (Ky), the closed-loop poles follow a

one-dimensional surface

The root locus plot

Defines what responses are possible by adjusting Ky

If you wand a different response add a pre-filter and a feedforward term

Lead, Lab, PID compensators

Covered in ECE 461 Controls Systems

R YU
G(s)K(s)

F(s)

PlantCompensator

Feed-Forward



Full-State Feedback:

Instead of just feeding back the output (Y), feed back the states (X)

 U = KrR + KxX

For an Nth-order system you now have N+1 degrees of freedom

Kx has N terms

Kr has 1 term

This means you can usually place the poles and DC gain anywhere
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Problem:  How do you find Kx and Kr?

Option 1:  Trial and Error (Monte Carlo)
for i=1:1000

   Kx = rand(1,4)*100;

   R = eig(A - B*Kx);

   plot(real(R),imag(R),'bx');

   end

Doesn't really help

Too many degrees of freedom



Finding Kx and Kr:

Option 2:  Determine the closed-loop dynamics

The eigenvalues of (A - B Kx)

A − BKx =
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The eigenvalues are a function of {k1, k2, k3, k4}

p(s) = det (sI − A)

sI − (A − BKx) =
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det(sI − A) =

s + 2 + k1 −1 + k2 k3 k4

−1 s + 2 −1 0

0 −1 s + 2 −1

0 0 1 s + 1

This gives a 4th-order polynomial depending on {k1, k2, k3, k4}

This method bogs down when you get past a 2nd-order system

There has to be a better way

There is....  stay tuned...



Controllability:

With full state feedback, you have

N equations (N eigenvalues to place) with

N degrees of freedom (the gains in Kx)

Can all N eigenvalues be placed anywhere?

Is there a solution for Kx given the desired closed-loop eigenvalues?

Answer

Sometimes yes

Sometimes no



No: Case 1

Assume B corresponds to an eigenvector.

B = Λ1

Then, if you use a similarity transform

T = Λ

where is the eigenvector matrix, then the system in diagonal form will beΛ

sZ = T−1ATZ + T−1BU
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With full-state feedback

U = −KzZ + KrR

U = − k1 k2 k3 k4 Z + KrR

results in

sZ =
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Three eigenvalues are fixed, only one changes

No - you cannot place all 4 poles anywhere if B is an eigenvector



Matlab Example:

Let B be the first eigenvector:
>> A = [-2,1,0,0;1,-2,1,0;0,1,-2,1;0,0,1,-1]

>> [M,V] = eig(A)

   -0.4285   -0.6565    0.5774    0.2280

    0.6565    0.2280    0.5774    0.4285

   -0.5774    0.5774   -0.0000    0.5774

    0.2280   -0.4285   -0.5774    0.6565

>> B = M(:,1)

   -0.4285

    0.6565

   -0.5774

    0.2280

>> eig(A)

   -3.5321

   -2.3473

   -1.0000

   -0.1206



If you guess random feedback gains, only one pole moves:
>> Kx = 10*rand(1,4)

Kx =    8.1472    9.0579    1.2699    9.1338

>> eig(A-B*Kx)

   -7.3371

   -2.3473

   -1.0000

   -0.1206

>> Kx = 10*rand(1,4)

    6.3236    0.9754    2.7850    5.4688

>> eig(A-B*Kx)

   -2.3473

   -0.1206

   -1.0000

   -1.1017



No: Case 2:

Assume B contans all eigenvectors but one:

B = Λ1 + Λ2 + Λ3

Converting the system to Jordan form results in
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Even with full-state feedback, the pole at  will not moveλ4



When can you place N poles anywhere?

The B matrix must contain all N eigenvectors

This is another way of saying the sytem must be controllable

(PBH rank test)

Problem:  How to find Kx and Kr?

Tomorrow's lecture...

A

B C
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Kr
R U sX X Y

1/s

Plant

Control Law



Summary

Feedback is all important

It allows you to use systems which are open-loop unstable

It allows you to improve the response of a system

It allows you to force a system to track a set point

Following Lectures

How to determine the feedback gains to meet your design requirements


