
 Heat Equation
Pole Placement Example

NDSU ECE 463/663

Lecture #14

Inst: Jake Glower

 Please visit Bison Academy for corresponding

lecture notes, homework sets, and solutions

Problem: Design a feedback controller for a 20th-order RC filter:

A DC gain of 1.00

No overshoot for a step input, and

A 2% settling time of 4 seconds.

V0 V1 V2 V3 V4 V5 V6 V19 V20

Y

+

-

YV0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 18 19 20

+

-
V0

Temperature Along a Metal Bar: Modeled as a 20-Stage RC Filter: R = 0.2 , C = 0.2FΩ

If you model this as a 20th order system, you'll get 20 feedback gains

Meaning you need to use 20 sensors

Approximate this with a 4th-order model

Lump 5 capacitors & 5 resistors together

Slightly wrong but now only needs 4 sensors

V0

V0

+

-
V0

V5 V10 V15 V20
R R R R

C C C C

+

-

Y

Y

Simplified Model: Lump Five Nodes Together to Give a 4-Stage RC Filter with R = 1 and C = 1FΩ

The 4th-order approximation for the 20th-order system is

s













V5

V10

V15

V20













=













−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1

























V5

V10

V15

V20













+













1

0

0

0












V0

Y =  0 0 0 1 













V5

V10

V15

V20













Now find the feedback gains using Bass Gura

Step 1: Input the system into Matlab
>> A = [-2,1,0,0; 1,-2,1,0; 0,1,-2,1; 0,0,1,-1]

 -2 1 0 0

 1 -2 1 0

 0 1 -2 1

 0 0 1 -1

>> B = [1;0;0;0]

 1

 0

 0

 0

>> C = [0,0,0,1]

 0 0 0 1

Decide where you want to place the closed-loop poles.

Dominant pole: s = -1

Arbitrarily place the other three poles at {-2, -3 , 4}

Step 2: Determine the feedback gains, Kx

From before,

>> Kx = ppl(A, B, [-1, -2, -3, -4])

 3.00 5.00 7.00 8.00

>> eig(A - B*Kx)

 -4.0000

 -3.0000

 -2.0000
 -1.0000

Step 3: Find Kr so that the DC gain is one. The closed-loop system is

>> DC = -C*inv(A - B*Kx)*B

>> Kr = 1/DC

 24.0000

This gives you the control law:

V0 = KrR − KxX

Step 4: Check the step response of the

closed-loop system:

>> G = ss(A-B*Kx, B*Kr, C, 0);

>> t = [0:0.01:10]';

>> y = step(G,t);

>> plot(t,y);

>> xlabel('Time (seconds)');

DC gain = 1.000

2% settling time = 4 seconds (ish)

No overshoot

Comparison to the 20th-Order Model

The 4th order model is slightly wrong

Moved C's so they could be lumped

How do these gains work for a 20th-order system?

A20 = zeros(20,20);

for i=1:19

 A20(i,i) = -50;

 A20(i+1,i) = 25;
 A20(i,i+1) = 25;

 end

A20(20,20) = -25;

B20 = zeros(20,1);

B20(1) = 25;

C20 = zeros(1,20);

C20(20) = 1;

Add in the feedback gains, Kx. These are zero execpt at elements {5,10,15,20}

>> K20 = zeros(1,20);

>> K20([5,10,15,20]) = Kx;

Case 1: Closed-Loop Poles = {-1, -2, -3, -4}

The 4th-order Model gives 20th order Model

>> eig(A-B*Kx)

 -4.0000

 -3.0000

 -2.0000

 -1.0000

eig(A20-B20*K20)

 -1.3662 + 1.0369i

 -1.3662 - 1.0369i

 -5.6278 + 3.5131i

 -5.6278 - 3.5131i

 -12.1576 + 5.2447i

 -12.1576 - 5.2447i

 -21.9870 + 4.8499i

 -21.9870 - 4.8499i

 -41.9362
 -50.0000

 -57.4661 + 5.1074i

 -57.4661 - 5.1074i

 -68.6791 + 7.0008i

 -68.6791 - 7.0008i

 -79.8836 + 4.9956i

 -79.8836 - 4.9956i

 -91.7830

 -98.2965 + 1.5098i

 -98.2965 - 1.5098i

Comparing Step Responses

Blue: 20th Order Model

Red: 4th Order Model

K20 = zeros(1,20);

K20([5,10,15,20]) = Kx;

G4 = ss(A-B*Kx, B*Kr, C, 0);

G20 = ss(A20-B20*K20, B20*Kr,

C20, 0);

t = [0:0.01:10]';
y4 = step(G4,t);

y20 = step(G20,t);

plot(t,y20,'b',t,y4,'r');

xlabel('Time (seconds)');

Why are the poles wrong?

Kx is too large

Large gains indicate you're moving the poles too far

The desired response is too different from the open-loop response

Check the open-loop poles:

How the system wants to behave.

>> eig(A)

 -3.5321

 -2.3473

 -1.0000

 -0.1206

Placing the closed-loop dominant pole at -1 means we're trying to make the

system 8x faster. That's a lot. Instead, let's try to make the closed-loop system

twice as fast and leave the other poles unchanged.

>> Kx = ppl(A, B, [-0.25, -1, -2.34, -3.53])

 0.1200 0.2477 0.3296 0.3677

The 4th-order Model 20th order Model

>> eig(A-B*Kx)

 -0.2500
 -1.0000

 -2.3400

 -3.5300

 -0.3267

 -1.2062

 -3.7687

 -6.7989

 -11.7347

 -16.3435

 -23.6016
 -27.6224

 -37.9640

 -44.5394

 -51.9244

 -59.3244

 -67.1925

 -73.5189

 -80.9994

 -84.7344

 -91.1452

 -95.2955

 -97.5251
 -99.4340

Comparing the two step responses:

Blue: 20th-order model

Red: 4th-order approximation

DC =-C*inv(A-B*Kx)*B

 0.4842

Kr = 1/DC

 2.0651

G = ss(A-B*Kx,B*Kr,C,D);

y = step(G,t);

G20 = ss(A20-B20*K20, B20*Kr,

C20, 0);

y20 = step(G20,t);

plot(t,y,t,y20)

Example 2: Can you make an RC filter oscillate?

Place the closed-loop poles at

s = {-1 + j5, -1 - j5, -5, -6 }

Solution: Same as before. Using Bass Gura to place the poles:

>> Kx = ppl(A, B, [-1+j*5, -1-j*5, -5, -6])

 6.0000 33.0000 201.0000 539.0000

>> eig(A - B*Kx)

 -1.0000 + 5.0000i

 -1.0000 - 5.0000i

 -6.0000

 -5.0000

Checking with the 20th-order system:

>> K20([5,10,15,20]) = Kx;

>> eig(A20-B20*K20)

 1.2002 + 4.4059i

 1.2002 - 4.4059i

 -3.7469 + 7.8668i

 -3.7469 - 7.8668i

 -10.1433 +11.5028i

 -10.1433 -11.5028i

 etc

The 20th-order system is unstable

The gains are too large or

This model isn't accurate enough for pushing it this hard.

Instead, let's try to not push the system so hard.

Check the open-loop eigenvalues:

>> eig(A)

 -3.5321

 -2.3473

 -1.0000

 -0.1206

The dominant pole is at -0.12.

Make the system twice as fast and oscillating.

Keep the fast two poles unchanged to keep the gains down

>> Kx = ppl(A,B,[-0.2+j,-0.2-j,-2.34,-3.53])

 -0.7300 0.2982 2.8943 5.1281

These gains are much more reasonable - so let's go with them.

Let's check to make sure Kx places the poles of (A - B Kx) where we want.

>> eig(A-B*Kx)

 -3.5300

 -2.3400

 -0.2000 + 1.0000i

 -0.2000 - 1.0000i

Checking the poles of the 20th-order system:

 -0.0554 + 1.1391i

 -0.0554 - 1.1391i

 -5.0210 + 1.2985i

 -5.0210 - 1.2985i
 -13.8275 + 2.4604i

 -13.8275 - 2.4604i

 etc

Sort of where we put the poles.

The difference tells you that the model is marginal for making the system this fast.

Now that we know Kx, find Kr to set the

DC gain to one:

>> DC =-C*inv(A-B*Kx)*B

 0.1164

>> Kr = 1/DC

 8.5906

Step 3: Check the closed-loop response:

Blue: 20th-Order System

Red: 4th-Order Approximation
G = ss(A-B*Kx, B*Kr, C, 0);

t = [0:0.01:5]';
y = step(G,t);

plot(t,y);

xlabel('Time (seconds)');

Matlab Simulation: Heat20
% 20-stage RC Filter

V = zeros(20,1);
V0 = 1;
DATA = [V0;V];
dV = zeros(20,1);

Ref = 1;
Kx = [3, 5, 7, 8];
Kr = 24;

K20 = zeros(1,20);
K20([5,10,15,20]) = Kx;

dt = 0.001;
t = 0;

while(t < 10)

 for i2=1:10
% Control Law
 V0 = Kr*Ref - K20*V;

 dV(1) = 25*V0 - 50*V(1) + 25*V(2);

 for i=2:19
 dV(i) = 25*V(i-1) - 50*V(i) + 25*V(i+1);
 end

 dV(20) = 25*V(19) - 25*V(20);

 V = V + dV*dt;
 t = t + dt;
 end

 plot([0:20], [V0;V], '.-');
 ylim([0,2]);
 pause(0.01);
 end

