Heat Equation
Pole Placement Example

NDSU ECE 463/663
Lecture #14
Inst: Jake Glower

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions




Problem: Design a feedback controller for a 20th-order RC filter:
« A DC gain of 1.00
- No overshoot for a step input, and
« A 2% settling time of 4 seconds.

VO| | 1|2 |3|4|5|6|7 |8|9]|10|11|12|13|14|15|16 |18 |18 | 19|20 Y

Vo C _ - - - - - - -

Temperature Along a Metal Bar: Modeled as a 20-Stage RC Filter: R =0.2Q, C =0.2F




If you model this as a 20th order system, you'll get 20 feedback gains

- Meaning you need to use 20 sensors

Approximate this with a 4th-order model
« Lump 5 capacitors & 5 resistors together
« Slightly wrong but now only needs 4 sensors

Vo Y

1= N 1= —— ¥

VO A /\R/\ V5 w V10 w V15 ARA V20
)

VOC

Simplified Model: Lump Five Nodes Together to Give a 4-Stage RC Filter withR=1Q and C = 1F




The 4th-order approximation for the 20th-order system is

vs | |21 0 0 || vs 1
Vio 121 0 || Vig 0
= + V
Vs 01-=211vs!| |ol?°
_Vz()_ _O 0 1—1__V2()_ _0_
e
Vio
Y=10001
I )
| V2o |

Now find the feedback gains using Bass Gura




Step 1: Input the system into Matlab
>> A = [_2111010; 11_21110; 0111_211; O/O/l/_l]

-2 1 0 0
1 -2 1 0
0 1 -2 1
0 0 1 -1

> B = [1;0;0,;0]

O o

>> C = [0,0,0,1]

Decide where you want to place the closed-loop poles.
« Dominant pole: s =-1
- Arbitrarily place the other three poles at {-2, -3 , 4}




Step 2: Determine the feedback gains, Kx

From before,

>> Kx = ppl(A/ B, [_l/ _2/ _3/ —47])

3.00 5.00 7.00 8.00

>> elg (A — B*Kx)

—-4.0000
-3.0000
-2.0000
—-1.0000

Step 3: Find Kr so that the DC gain 1s one. The closed-loop system is

>> DC
>> Kr

-C*inv (A — B*Kx) *B
1/DC

24.0000




This gives you the control law:
Vo=K,R-K,X

Step 4: Check the step response of the
closed-loop system:

>> G = ss(A-B*Kx, B*Kr, C, 0);
> t = [0:0.01:1071";

>> vy = step(G,t);

>> plot (t,y);

>> xlabel ('Time (seconds)');

« DC gain = 1.000
« 2% settling time = 4 seconds (ish)
« No overshoot

08

06

0.4F

02k

4 5 B

Time (seconds)

10




Comparison to the 20th-Order Model

The 4th order model is slightly wrong
« Moved C's so they could be lumped

How do these gains work for a 20th-order system?

A20 = zeros (20, 20);

for 1=1:19
A20(i,1) = -50;
A20(i+1,1) = 25;
A20(1i,1+1) = 25;
end
A20(20,20) = =25;
B20 = zeros (20,1);
B20 (1) = 25;
C20 = zeros(1,20);
Cc20(20) = 1;

Add in the feedback gains, Kx. These are zero execpt at elements {5,10,15,20}

>> K20 = zeros(1l,20);
>> K20([5,10,15,20]) = Kx;




Case 1: Closed-Loop Poles = {-1, -2, -3, -4}

The 4th-order Model gives

>>

elg (A—-B*Kx)

-4.0000
-3.0000
-2.0000
-1.0000

20th order Model

elg (A20-B20*K20)

.3662
.3662
.6278
.6278
.1576
.1576
. 9870
.9870
.9362
.0000
.4661
.4601
.6791
.6791
.8836
.8836
. 7830
.2965
.2965

L+ L+ 0+ 0+
BN WWR R

I+ 1+ | +
B J 3 O1 O

+
=

=

.0369i
.0369i
.51311
.51311
.24471
.24471
.84991
.84991

.10741
.10741
.00081
.00081
.99561
.99561

.50981
.50981




Comparing Step Responses
20th Order Model (blug) & 4th Order Model (red)

« Blue: 20th Order Model ————
« Red: 4th Order Model

K20 = zeros(1l,20); 1
K20([5,10,15,20]) = Kx;

G4 = ss(A-B*Kx, B*Kr, C, 0);
G20 = ss (A20-B20*K20, B20*Kr,
c20, 0);

08

t = [0:0.01:1071"; 0B
v4d = step(G4,t);

yv20 = step(G20,t);

plot (t,vy20, 'b',t,v4,'r");

xlabel ('Time (seconds)'); nar

02+

Time (seconds)




Why are the poles wrong?
- Kx 1s too large
 Large gains indicate you're moving the poles too far
« The desired response 1s too different from the open-loop response

Check the open-loop poles:

- How the system wants to behave.

>> eig (A)

-3.5321
-2.3473
—-1.0000
-0.1206

Placing the closed-loop dominant pole at -1 means we're trying to make the
system 8x faster. That's a lot. Instead, let's try to make the closed-loop system
twice as fast and leave the other poles unchanged.




>> Kx = ppl(A, B, [-0.25, -1, -2.34, -3.53])
0.1200 0.2477 0.3296 0.3677

The 4th-order Model 20th order Model

>> eig (A-B*Kx) -0.3267
-1.2062

—0.2500 -3.7687
—1.0000 -6.7989
—2.3400 ~11.7347
—3.5300 ~16.3435
-23.6016

-27.6224

~37.9640

~44.,5394

~-51.9244

~59.3244

~67.1925

~73.5189

-80.9994

-84 .7344

~91.1452

~-95.2955

-97.5251

-99.4340




Comparing the two step responses:

« Blue: 20th-order model
« Red: 4th-order approximation 09}

0.8
DC =-C*inv (A-B*Kx) *B
0.4842 oal
Kr = 1/DC
2.0651
G = ss(A-B*Kx,B*Kr,C,D);
y = step(G,t);

06 [

G20 = ss (A20-B20*K20, B20*Kr, far
c20, 0);
y20 = step(G20,t); ol

plOt (t/ Y t, YZO)

03[

021

01

L
o 2 4 B B 10
Time (seconds)




Example 2: Can you make an RC filter oscillate?
- Place the closed-loop poles at

s={-1+j5, -1-i5, -5, -6}

Solution: Same as before. Using Bass Gura to place the poles:

>> Kx = ppl(A, B, [-1+3*5, -1-3*5, -5, —-61 )
6.0000 33.0000 201.0000 539.0000
>> elg (A — B*Kx)

-1.0000 + 5.00001
-1.0000 - 5.00001
-6.0000
—-5.0000




Checking with the 20th-order system:

>> K20([5,10,15,20]) = Kx;
>> eig (A20-B20*K20)

1.2002 + 4.4059i
1.2002 - 4.4059i
—-3.7469 + 7.86681
—-3.7469 - 7.86681
-10.1433 +11.50281
-10.1433 -11.50281

etc

The 20th-order system is unstable
« The gains are too large or
« This model isn't accurate enough for pushing it this hard.




Instead, let's try to not push the system so hard.
« Check the open-loop eigenvalues:

>> eig (A)

-3.5321
—-2.3473
-1.0000
-0.1206

The dominant pole is at -0.12.
- Make the system twice as fast and oscillating.
« Keep the fast two poles unchanged to keep the gains down

>> Kx = ppl(A,B, [-0.2+7,-0.2-5,-2.34,-3.53])

~0.7300 0.2982 2.8943 5.1281
These gains are much more reasonable - so let's go with them.




Let's check to make sure Kx places the poles of (A - B Kx) where we want.

>> eig (A-B*Kx)

-3.5300
-2.3400
-0.2000 + 1.00001
-0.2000 - 1.00001

Checking the poles of the 20th-order system:

-0.0554 + 1.13911

-0.0554 - 1.13911

-5.0210 + 1.29851

-5.0210 - 1.29851

-13.8275 + 2.46041

-13.8275 - 2.46041
etc

Sort of where we put the poles.
« The difference tells you that the model 1s marginal for making the system this fast.




Now that we know Kx, find Kr to set the

DC gain to one:
>> DC =—-C*inv (A-B*Kx) *B
0.1164
>> Kr = 1/DC

8.5906

Step 3: Check the closed-loop response:
 Blue: 20th-Order System
« Red: 4th-Order Approximation

06

G = ss(A-B*Kx, B*Kr, C, 0); 04l
t = [0:0.01:5]";

y = step(G,t); aal
plot (t,y);

xlabel ('Time (seconds)'); 0 | | | | .

0 2 4 B g 10
Time [seconds)




Matlab Simulation: Heat20

% 20-stage RC Filter

V = zeros (20,1);
vo = 1;
DATA = [VO;V];

dV = zeros (20,1);

Ref = 1;
Kx = [3, 5, 7/ 8];
Kr = 24;

K20 = zeros(1,20);
K20([5,10,15,20]) = Kx;

dt = 0.001;
t = 0;

1.8

1.6

0.2

20




while(t < 10)

for 12=1:10
% Control Law
VO = Kr*Ref - K20*V;

dVv (1) = 25*V0 — 50*V (1) + 25*V(2);
for 1=2:19
dV (1) = 25*V(1-1) - 50*V (1) + 25*V(i+1);
end
dv (20) = 25*V(19) - 25*V (20);

V =V + dv*dt;
t =t + dt;

end
plot ([0:20], [VO;V], ".=-");
ylim ([0, 2]);
pause (0.01) ;

end







