
Servo-Compensator Design
NDSU ECE 463/663

Lecture #16

Inst: Jake Glower

 Please visit Bison Academy for corresponding 

lecture notes, homework sets, and solutions



Tracking a Set Point

How do you force a system to track a set point?

How do you force the DC gain to be 1.0000?

Previous Solution:

Add a gain, Kr, to make the DC gain equal to 1.0000
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What if the plant model is uncertain?
If the dynamics change, the DC gain will change

If the model is incorrect the DC gain will be incorrect

Kr needs to change accordingly.
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Servo Compensator

Add an integrator (termed a servo compensator)

Z = ∫ (Ref − Y)dt

At steady state
dZ

dt
= 0

Y = Ref

Add feedback gains to stabilize

the closed-loop system
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Open-Loop System
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Example:  4th-Order Heat Equation

Design a feedback control law for a 4-stage RC filter so that

The 2% settling time is 4 seconds,

There is no overshoot for a step input, and

The DC gain from R to Y is one.
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Solution:  Add a servo compensator:

Open-Loop Plant & Servo:
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In Matlab, input the system:

A = [-2,1,0,0;1,-2,1,0;0,1,-2,1;0,0,1,-1]

B = [1;0;0;0]

C = [0,0,0,1];

Create the augmented system (plant plus servo-compensator) 
 

A5 = [A, B*0; C, 0]

    -2     1     0     0     0

     1    -2     1     0     0

     0     1    -2     1     0

     0     0     1    -1     0

     0     0     0     1     0

B5 = [B; 0]

     1

     0

     0

     0

     0



Use Bass-Gura to place the poles at {-1, -2, -2, -2, -2}.  

>> K5 = ppl(A5, B5, [-1,-2,-2,-2,-2])

    2.0000    7.0000   13.0000   25.0000   16.0000

>> eig(A5-B5*K5)

  -2.0005          

  -2.0000 + 0.0005i

  -2.0000 - 0.0005i

  -1.9995          

  -1.0000          

The feedback gains, Kx and Kz, are then
>> Kx = K5(1:4)

    2.0000    7.0000   13.0000   25.0000

>> Kz = K5(5)

   16.0000



The closed-loop system is
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To plot the step response from R to both Y and U, define the output to be
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In Matlab:

>> C5 = [C, 0; -K5]

    0    0    0    1     0

   -2   -7  -13  -250  -16

>> D5 = [0; 0]

    0

    0

>> Br = [0*B ; -1];

>> G5 = ss(A5 - B5*K5, Br, C5, D5);

>> y = step(G5,t);

>> plot(t,y)

>> 
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Matlab Simlation (modified Heat20.m)
V = zeros(20,1);

Z = 0;

Ref = 1;

Kx = [2 7 13 25];

Kz = 16;

dt = 0.001;

t = 0;

while(t < 10)

   for i2=1:10

      X = [V(5) ; V(10) ; V(15) ; V(20)];

      V0 = -Kx*X - Kz*Z;

      dZ = V(20) - Ref;

      dV(1) = 25*V0 - 50.1*V(1) + 25*V(2);

      for i=2:19

         dV(i) = 25*V(i-1) - 50.1*V(i)

               + 25*V(i+1);

         end

      dV(20) = 25*V(19) - 25.1*V(20);

      V = V +  dV*dt;

      Z = Z +  dZ*dt;

      t = t + dt;

      end

   plot([0:20], [V0;V], '.-');
   ylim([0,2]);

   pause(0.01);

   end
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Comments:
The servo compensator forces the output to track a constant set point

It does so by adding a constant to the input (integration constant)

It searches until it finds the constant that forces Y → Ref
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Constant Disturbance:

Problem:  Suppose a system has a constant disturbance.

Design a feedback control law that forces Y=R in spite of this disturbance.

Solution:  Add a servo compensator

At steady state, sZ = 0

Z is an integration constant

- Cancels the disturbance and

- Forces Y = R
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Step Response with Respect to What?

Note:  The B matrix determines what is being stepped.

The closed-loop plant + setpoint + disturbance dynamics are...
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Step Response with Respect to the Set Point (R)

Use the B matrix with repect to R

B = Br

Br = [0*B;-1];

G5 = ss(A5 - B5*K5, Br, C5, D5);

y = step(G5,t);

plot(t,y);

The system tracks a constant set point

The servo compensator figures out what u(t)

needs to be to force y(t) → 1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Time (seconds)

y(t)u(t)/5



Step Response with Respect to the Disturbance (d)

Use the B matrix with respect to d

Bd = [B ; 0]

>> Bd = [B ; 0];

>> G5 = ss(A5 - B5*K5, Bd, C5, D5);

>> y = step(G5,t);

>> plot(t,y);

The servo compensator searches to find the

constant that forces Y = R

u(t) = -1 cancels with the disturbance

u(t) + d(t) = 0

(-1) + (+1) = 0
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Step Response with Respect to both R & d

Let

R = 1

d = 0.5

Use the B matrix with respect to d

>> Br = [0*B ; -1];

>> Bd = [B ; 0];

>> G5 = ss(A5 - B5*K5, Br+0.5*Bd, C5, D5);

>> y = step(G5,t);

>> plot(t,y);
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Example 2:  Ball and Beam System
m = 1kg

J = 0.2 kg m2
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Full-State Feedback

No servo compensator

Poles at {-1, -2, -3, -4}

U = KrR − KxX

Kr makes the DC gain 1 when m = 1kg

Increase the mass to 1.1kg

Extra torque on the beam acts as a constant

disturbance

No longer tracks
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Add a Servo Compensator

Poles at {-1, -2, -3, -4, -5}

Now tracks a constant set point

Now rejects a constant disturbance

X = [0, 0, 0, 0]';

Z = 0;

dt = 0.01;

t = 0;

Kx = [-56.774 102.004 -38.573 18.00];

Kz = -20.5723;

Ref = 1;

y = [];

 

while(t < 10)

   U = -Kz*Z - Kx*X;

   dX = BeamDynamics(X, U);

   dZ = X(1) - Ref;

   X = X + dX * dt;

   Z = Z + dZ*dt;

   y = [y ; Ref, X(1)];

   t = t + dt;

   BeamDisplay(X, Ref);

   end 0 2 4 6 8 10
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Summary

A servo compensator creates an augmented system:
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