
Servo-Compensators

Generalized Case
NDSU ECE 463/663

Lecture #18

Inst: Jake Glower

 Please visit Bison Academy for corresponding 

lecture notes, homework sets, and solutions



Recap

If tracking or rejecting a constant, add a servo compensator with a pole at s = 0

If tracking or rejecting a sinusoid, add a servo compensator with poles at  ±jω

Not surprisingly,

If tracking or rejecting signals with poles at , add a servo0, jω, −jω

compensator with poles at  .0, jω, −jω
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State-Space Formulation: Let the plant be

sX = AX + BU + Bd

Y = CX

Define a servo-compensator

sZ = AzZ + Bz(Y − R)

so that the eigenvalue of Az are

eig(Az) = 0, ±jω

Feed the servo-compensator with the difference between Y and the set point R
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In state-space, the plant plus servo-compensator looks like the following:
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or you can write this as
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Example:  

Assume a 4th-order heat equation:

sX =
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Design a feedback control law for the following system so that

The 2% settling time is 13 seconds,

There is no overshoot for a step input, 

Y tracks a constant setpoint ( R = 1), and

Y rejects a sinusoidal disturbance at 1 rad/sec



Note:  The result works for any combination of DC and 1 rad/sec:

R(t) = a1 + b1cos (t) + c1sin(t)

d(t) = a2 + b2cos (t) + c2sin(t)

Step 1:  Add a servo compensator:

Controllable

Poles at {0, j, −j}
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Step 2:  Create the augmented system:  plant + servo compensator
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Design a full-state feedback control law to meet the design specs.

Dominant pole at s = -1

Place the poles at {-1, -2, -2.2, -2.3, -2.4, -0.3+j, -0.3-j} using Bass Gura

In Matlab:

A = [-2,1,0,0;1,-2,1,0;0,1,-2,1;0,0,1,-1]

    -2     1     0     0

     1    -2     1     0

     0     1    -2     1

     0     0     1    -1

B = [1;0;0;0]

     1

     0

     0

     0

C = [0,0,0,1]

     0     0     0     1



Az = [0,1,0;-1,0,0;0,0,0]

     0     1     0

    -1     0     0

     0     0     0

Bz = [1;1;1]

     1

     1

     1

A7 = [A, zeros(4,3) ; Bz*C, Az]

    -2     1     0     0  :   0     0     0

     1    -2     1     0  :   0     0     0

     0     1    -2     1  :   0     0     0

     0     0     1    -1  :   0     0     0

    ------------------------------------------

     0     0     0     1  :   0     1     0

     0     0     0     1  :  -1     0     0

     0     0     0     1  :   0     0     0



B7u = [B ; zeros(3,1)]

     1

     0

     0

     0

 - - - - -

     0

     0

     0

 

K7 = ppl(A7, B7u, [-1, -2, -2.2, -2.3, -2.4, -0.3+j, -0.3-j])

    3.5000   12.0900   29.6810   63.4358    0.5236   21.3719   26.4739

This gives

Kx = [ 3.5000   12.0900   29.6810   63.4358 ]

Kz = [ 0.5236   21.3719   26.4739 ]



Step Responses

Use the step2 command from before

function [ y ] = step3( A, B, C, D, t, X0, U )

Case 1:  Step Response with Respect to R

The system tracks a constant set point:

B7r = [0*B ; -Bz];

C7 = [C, zeros(1,3)];

D7 = 0;

X0 = zeros(7,1);

t = [0:0.1:20]';

R = 0*t + 1;

y = step3(A7-B7u*K7, B7r, C7, D7, t, X0, R);

plot(t,R,'r',t,y,'b')
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Case 2:  Response to disturbance, d

Rejects a 1 rad/sec disturbance
B7d = [B ; 0*Bz];

R = 0*t;

d = sin(t);

y = step3(A7-B7u*K7, B7d, C7, D7, t, X0, d);

plot(t,R,'r',t,y,'b',t,d,'g')
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Case 3:  Constant Set Point & 1 rad/sec Noise

Tracks a constant set point, rejects a 1 rad/sec disturbance
d = sin(t);

R = 0*t + 1;

y = step3(A7-B7u*K7, [B7r, B7d], C7, [0,0], t, X0, [R,d]);

plot(t,R,'r',t,y,'b',t,d,'g')
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Example 2:  Ball and Beam System

m = 1.1kg  (0.1kg more than than the model)

R(t) = 1.0 - 0.4 cos(t)

Extra mass creates

A constant disturbance due to gravity, plus

A 1 rad/sec disturbance
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Same solution as before

Add a servo compensator

Pick Az to have poles at {0, -j, +j}

Pick Kx and Kz to place the closed-loop poles

ZsZ

Az

B

A

C
XsXU

Bz

d(t) R

Kx

Kz

control law

Servo-Compensator

Plant



Result: m = 1.1kg

Tracks a constant & 1 rad/sec sine wave

Rejects disturbances at DC and 1 rad/sec
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Sidelight:  What is the frequency changes?

Change the frequency to 0.5 rad/sec

No longer tracks

Not designed for 0.5 rad/sec
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What to do?

Option 1:

Determine the frequency of R(t)

Redesign the servo compensator

Option 2:

Pick Az to have poles at {0, j0.5, j, j1.5, j2}

Results in a 9th-order compensator

Option 3: Adaptive Control

Estimate the frequency of R(t) in real time

Change Az, Kx, Kz accordingly

Option 4: Adaptive Control (Self-Tuning Regulator)

Estimate the next value of R(t) in real time

Determine the input to drive y(t) to R(t) in real time

There are more options...



Summary

If you are trying to track a constant and/or reject a constant disturbance

Add a servo compensator with a pole at s = 0.

If you are trying to track and/or reject a sinusoidal

Add a servo compensator with poles at {+jw, -jw}

If you are trying to do both

Add a servo compensator with poles at {0, +jw, -jw}

This can result in a very high order compensator

The step response can be pretty squirrelly as the compensator tries to figure out

what you're trying to track


