The Separation Principle NDSU ECE 463/663 Lecture #20 Inst: Jake Glower

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Recap

If a system is controllable, you can stabilze it using full-state feedback

• This requires measurements of *all* of the system's states

If a system is observable, you can estimate the systems states

• Full-order observer

If a system is both controllable and observable, you can

- Estimate the states using a full-order observer, and
- Stabilize the system using these estimates

Problem:

How do you determine *both*

- The feedback gains, Kx, and
- The observer gains, H?

Do they interract?

The Separation Principle:

Assume you have a plant

sX = AX + BU Y = CXalong with a state-estimator $sX_e = AX_e + BU + H(Y - Y_e)$

$$Y_e = CX_e$$

along with the control law

$$U = K_r R - K_x X_e$$

The augmented system becomes

$$s\begin{bmatrix} X\\ X_e \end{bmatrix} = \begin{bmatrix} A & 0\\ HC & A - HC \end{bmatrix} \begin{bmatrix} X\\ X_e \end{bmatrix} + \begin{bmatrix} B\\ B \end{bmatrix} U$$

or, substituting for U

$$s\begin{bmatrix} X\\ X_e \end{bmatrix} = \begin{bmatrix} A & -BK_x \\ HC\hat{A} - HC - BK_x \end{bmatrix} \begin{bmatrix} X\\ X_e \end{bmatrix} + \begin{bmatrix} B\\ B \end{bmatrix} K_r R$$

Do a change of variable: $\begin{bmatrix} X \\ E \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} X \\ X_e \end{bmatrix}$ Do a similarity transform

$$s\begin{bmatrix} X\\ E \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 1 & -1 \end{bmatrix}^{-1} \begin{bmatrix} A & -BK_x \\ HC & A & -HC & -BK_x \end{bmatrix} \begin{bmatrix} 1 & 0\\ 1 & -1 \end{bmatrix} \begin{bmatrix} X\\ E \end{bmatrix} + \begin{bmatrix} 1 & 0\\ 1 & -1 \end{bmatrix}^{-1} \begin{bmatrix} B\\ B \end{bmatrix} K_r R$$

Simplify

$$s\begin{bmatrix} X\\ E \end{bmatrix} = \begin{bmatrix} A - BK_x & BK_x\\ 0 & A - HC \end{bmatrix} \begin{bmatrix} X\\ E \end{bmatrix} + \begin{bmatrix} B\\ 0 \end{bmatrix} K_r R$$

Note that the augmented system's A matrix is diagonal. The eigenvalues are...

- The eigenvalues of (A BKx) and
- The eigenvalues of (A HC)

You can design the full-state feedback gains without any regard of the observer gains and visa versa.

• This is the separation principle

Selection of Observer Gains

- Kx: This is determined by the system requirements
 - Settling time, Overshoot, ...
- H: How do you determine H?
 - Thought #1: Make the observer 3-10x faster than the plant The observer states determine the plant's input. You want the observer states to be correct before applying U There is always sensor noise, so don't go overboard.
 - 3-10x faster than the closed-loop system is a reasonable compromise
 - Thought #2: It depends...

If there is a lot of sensor noise, make H small If there is a lot of input disturbances, make H large If there is both sensor noise and input disturbances, it's a trade-off

The second approach leads to a Kalman filter (optimal observer)

Coming soon....

Example 1: Heat Equation

Design a fedback controller for the following system using only the output measurement, Y, so that the closed-loop system has

- No overshoot for a step input,
- A 2% settling time of 4 seconds, and
- A DC gain of one.

$$sX = \begin{bmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} X + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} U$$
$$Y = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} X$$

Controller Design

Use the separation principle to design the controller and observer separately. Pick your favorite controller: Assume full-state feedback:

$$U = K_r R - K_x X$$

In Matlab:

Observer Design

Since the closed-loop system has a dominant pole at s = -1, place the observer poles 3x faster

Note:

- You really don't care how you generate U.
- The control law doesn't affect the observer design

Overall Design

• Instead of feeding back the plant states, feed back the state estimates (Xe)

$$s\begin{bmatrix} X\\ X_e \end{bmatrix} = \begin{bmatrix} A & -BK_x \\ HCA - HC - BK_x \end{bmatrix} \begin{bmatrix} X\\ X_e \end{bmatrix} + \begin{bmatrix} B\\ B \end{bmatrix} K_r R$$

In Matlab:

```
A8 = [A, -B*Kx ; H*C, A-H*C-B*Kx];
B8 = [B;B];
B8 = [B;B]*Kr;
C8 = [C,0*C ; 0*C,C];
D8 = [0;0];
t = [0:0.01:10]';
X0 = [0;0;0;0; 0.2;0.4;0.6;0.8];
R = 0*t+1;
y = step3(A8,B8,C8,D8,t,X0,R);
plot(t,y);
```


Example 2: Servo Compensator Design

• Note: The separation principle states that the controller design and the observer design are completely separate. To illustrate this, design the controller using a servo compensator.

Kx Kz K5 = 8.0000 30.0000 77.0000 158.0000 120.0000 Observer Design

- No change
- Place the observer poles 3x faster

```
H = ppl(A', C', [-3, -4, -5, -6])'
H = \begin{bmatrix} 61.0000 \\ 70.0000 \\ 38.0000 \\ 11.0000 \end{bmatrix}
```


Overall System:

Plant & Servo Compensator & Observer

$$\begin{bmatrix} sX\\ sX_e\\ sZ \end{bmatrix} = \begin{bmatrix} A & -BK_x & -BK_z\\ HCA - HC - BK_x & -BK_z\\ C & 0 & 0 \end{bmatrix} \begin{bmatrix} X\\ X_e\\ Z \end{bmatrix} + \begin{bmatrix} 0\\ 0\\ -1 \end{bmatrix} R$$

In Matlab:

Kx = K5(1:4); Kz = K5(5); A9 = [A, -B*Kx, -B*Kz; H*C, A-H*C-B*Kx, -B*Kz; C, 0*C, 0]; B9 = [0*B ; 0*B; -1]; C9 = [C,0*C,0 ; 0*C, C, 0]; D9 = [0;0]; X0 = [0;0;0;0;0.2;0.4;0.6;0.8;0]; t = [0:0.01:10]'; R = 0*t+1; y = step3(A9, B9, C9, D9, t, X0, R); plot(t,y);

Re	Resulting A9:												
	sX		A	- <i>E</i>	3 <i>K</i>	X_{x}	-BI	K_z					
	sX_e	=	HC A	-H0	C	$-BK_{2}$	x - BI	K_z	X _e	Ŧ	0	R	
	sZ		С		0		0		Z				
		Х					X	е			Z		
	-2	1	0	0	:	-8	-30	-77	-158	:	-120		
	1	-2	1	0	:	0	0	0	0	:	0		
	0	1	-2	1	:	0	0	0	0	:	0		
	0	0	1	-1	:	0	0	0	0	:	0		
-	0	0	0	61	:	-10	-29	-77	-219	:	-120		
	0	0	0	70	:	1	-2	1	-70	:	0		
	0	0	0	38	:	0	1	-2	-37	:	0		
_	0	0	0	11	:	0	0	1	-12	:	0		
	0	0	0	1	:	0	0	0	0	:	0		

Example 3: Cart and Pendulum

Assume you only measure position.

• Can you control the system?

Example 3:

For the first 4/3 second, the state estimates are poor

- Observer poles: { -3, -4, -5, -6}
- Poor estimates results in poor response

How do you adjust the feedback gains, Kx, so that they only kick in once the observer converges?

This is a *very* difficult problem and has yet to be solved.

- Time-varying gains (time doman) imply convolution in the frequency domain
- This is a nonlinear system

Eigenvalues no longer apply Many of our definitions of stability no longer apply

Summary

Observers and controllers do not affect each other

- Design the controller as if all states were measured
- Design the observer without any concern about the controller

The two should work together without any impact on each other's stability

