
LQG Control with Servo
Compensators

NDSU ECE 463/663

Lecture #27

Inst: Jake Glower

Please visit Bison Academy for corresponding

lecture notes, homework sets, and solutions

Servo Compensator:
Servo-Compensators allow you to track a constant set-point:

Plant Servo-Compensator

Y

R

XsXU
B

A

C

Kx

Kz

sZ Z

s





X

Z




 =






A − BKx −BKz

C 0










X

Z




 +






0

−1




R

Problem

Heat Equation + Servo Compensator

s










X
. ..

Z









=



















−2 1 0 0
.
.
. 0

1 −2 1 0
.
.
. 0

0 1 −2 1
.
.
. 0

0 0 1 −1
.
.
. 0

.

0 0 0 1
.
.
. 0




























X
. ..

Z









+



















1

0

0

0

. ..

0


















U +



















0

0

0

0

. ..

−1


















R

y = x4 =  0 0 0 1
.
.
. 0 





X

Z






Use LQR techniques to find Kx and Kz

No error for a step input (assured with the use of a servo compensator)

A 2% settling time of 4 seconds, and

<4% overshoot for a step input

Solution (take 1)

Ignore the servo states:

They are just dummy states

Weight the output

It's what you care about

y = x4 =  0 0 0 1
.
.
. 0 










X
. ..

Z










y = CxX

Q = Cx
TCx

Problems:

Gives you an error: System is not observable
Q = 1 * Qy;

R = 1;

Kx = lqr(A, B, Q, R)

 !--error 998

 internal error, info=4.

When you get an error like that, the math is trying to tell you something. The

challenge is trying to figure out what the math is trying to say....

Fix:

 Q = Cx
TC + 10

−3I

Problem 2: The resulting system is really slow

Q = C5'*C5 + eye(5,5) * 1e-3

 0.001 0. 0. 0. 0.

 0. 0.001 0. 0. 0.

 0. 0. 0.001 0. 0.

 0. 0. 0. 1.001 0.

 0. 0. 0. 0. 0.001

Kx = lqr(A, B, Q, R)

 0.0641290 0.1298143 0.1958329 0.2527241 0.0316228

eig(A5 - B5*Kx)

 -3.5319727

 -2.3486196

 -0.9901871

 -0.1708104

 -0.0225392 (dominant pole: should be around -1)

Problem 3: Increasing Q only makes things worse:

Q = 1000*C5'*C5 + eye(5,5) * 1e-3

 0.001 0. 0. 0. 0.

 0. 0.001 0. 0. 0.

 0. 0. 0.001 0. 0.

 0. 0. 0. 1000.001 0.

 0. 0. 0. 0. 0.001

Kx = lqr(A, B, Q, R)

 1.6015116 4.4849429 9.4975698 15.097135 0.0316228

eig(A5 - B5*Kx)

 -3.1945132

 -3.1689866

 -1.1185062 + 1.3690332i

 -1.1185062 - 1.3690332i

 -0.0009995 (dominant pole: worse than before)

Compensator Design (take 2)

The math is dumb: it thinks

Z is the system output

Y is the derivative of the system output

Plant Servo-Compensator

Y

R

XsXU
B

A

C

Kx

Kz

sZ Z

Procedure

Increasing the weighting on Z should speed up the system

Stiffer spring

Increasing the weighting on Y should add more friction

Stiffer shocks

Plant Servo-Compensator

Y

R

XsXU
B

A

C

Kx

Kz

sZ Z

Example: Find Kx and Kz so that the closed-loop system has

No error for a step input

2% settling time of 4 seconds, and

No overshoot for a step input

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

Time (seconds)

desired response

Start with Cz and Cx:

Cz = [0,0,0,0,1]

 0. 0. 0. 0. 1.

Cx = [0,0,0,1,0]

 0. 0. 0. 1. 0.

and the corresponding Q matrices:

Qz = Cz'*Cz;

Qx = Cx'*Cx

First guess, let Q = Qz

Q = Qz

Kx = lqr(A, B, Q, R)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

Time (seconds)

desired response

actual response

Too slow: Increase Q to 10,000:

Q = Qz*1e4;

Kx = lqr(A, B, Q, R)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

Time (seconds)

desired response

Add friction to drop overshoot:
Q = Qz*5000 + Qy*10000;

Kx = lqr(A, B, Q, R)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

Time (seconds)

desired

actual

