
Kalman Filters

NDSU ECE 463/663

Lecture #30

Inst: Jake Glower

Please visit Bison Academy for corresponding 

lecture notes, homework sets, and solutions



Recap:

If all of the states are measured, you can use full-state feedback to control a

dynamic system.

Bass-Gura (pole placement) can be used to find the feedback gains

LQR techniques can be used to find the feedback gains
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If the states are not measured, they can be estimated with a full-order observer

Bass-Gura can be used to find H

LQR techniques can be used to find H

1/sB

A

C
XsX Y

Plant

1/sB

A

C
XesXe Y

Observer

H

U

U

Kx

Kr
R



What if there is noise? 

sX = AX + BU + Fv v = η(0, V2)

Y = CX + w w = η(0, W2)
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H should reflect the amount of noise on the system:

If the sensor noise is zero, H should be is large

If the state-disturbances are zero, H should be small

What is the "best" H if you have both?
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Kalman Filter

If "best" as minimizing the variance of the state error

E



X − X

2 


the solution is a LQR observer where

Q = (FV)(FV)T = F ⋅ V2 ⋅ FT

R = WWT = W2

An LQR observer designed with this value of Q and R is termed a Kalman

Filter.  (It's just a full-order observer with a specific feedback gain, H.)



Example:  4th Order Heat Equation

Suppose you have a 4-order heat equation with a large disturbance at the

input.
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v v~N(0, 12)

Determine the optimal observer with sensor noise:

sensor noisew~N(0, W2)

Good sensors:  noise 100x less than disturabancesW = 0.01

W = 0.1

Noisy SensorsW = 1



Case 1:  Good Sensors  (small noise)

W = 0.01

V  = 1
W = 0.01;      % sensor noise

V = 1;         % state disturbance (on U)

Q = F*V*V*F';

R = W*W;

H = lqr(A',  C',  Q,  R)'

A8 = [A, zeros(4,4) ;   H*C,  A - H*C ];

B8 = [B  F  zeros(4,1) ;  B   zeros(4,1)   H];

     Ref         Nx         Ny

    1.0000    1.0000         0

         0         0         0

         0         0         0

         0         0         0

    1.0000         0   25.5559

         0         0   18.4321   H shows up here

         0         0    8.0233

         0         0    3.1287



States and State Estimates with State and Sensor Noise:  ,  W ∼ N(0, 0.012) V ∼ N(0, 12)



States and State Estimates.  



Case 2:  Not so Good Sensors  (small noise)

W = 0.1

V  = 1

W = 0.01;      % sensor noise

V = 1;         % state disturbance (on U)

Q = F*V*V*F';

R = W*W;

H = lqr(A',  C',  Q,  R)'

    1.1169

    1.2204

    0.9184

    0.6843

Note that the larger sensor noise has resulted in the observer gains being

reduced.



States and State Estimates with State and Sensor Noise:  Sensor Noise 10x larger



Case 3:  Noisy Sensors 

W = 1

V  = 1

W = 1;      % sensor noise

V = 1;         % state disturbance (on U)

Q = F*V*V*F';

R = W*W;

H = lqr(A',  C',  Q,  R)'

    0.0293

    0.0417

    0.0436

    0.0427



States and State Estimates with State and Sensor Noise:  Sensor Noise 100x larger



Note:  Only the ratio of Q and R matter.  If both disturnances are 10x smaller,

you get the same observer gains (same Kalman filter gains)

W = 0.1;         % sensor noise

V = 0.1;         % state disturbance (on U)

Q = F*V*V*F';

R = W*W;

H = lqr(A',  C',  Q,  R)'

H =

    0.0293

    0.0417

    0.0436

    0.0427



States and State Estimates with State and Sensor Noise:  Both sensor and input noise scaled down 10x



Main Calling Script in Matlab

W = 0.01;      % sensor noise

V = 1;         % state disturbance (on U)

Q = F*V*V*F';

R = W*W;

H = lqr(A',  C',  Q,  R)'

A8 = [A, zeros(4,4) ;   H*C,  A - H*C ];

B8 = [B  F  zeros(4,1) ;  B   zeros(4,1)   H];

t = [0:0.001:10]';

N = size(t);

X0 = zeros(8,1);

U = [ ones(N),  randn(N)*V,  randn(N)*W ];

C8 = eye(8,8);

D8 = zeros(8,3);

y = step3(A8, B8, C8, D8, t, X0, U );

plot(t,y)



function [ y ] = step3( A, B, C, D, t, X0, U )

T = t(2) - t(1);

[m, n] = size(C);

npt = length(t);

Az = expm(A*T);

Bz = B*T;

X = X0;

y = zeros(npt, m);

y(1,:) = (C*X + D * ( U(1,:)' ) )';

for i=2:npt

    X = Az*X + Bz*( U(i,:)' );

    Y = C*X + D * ( U(i,:)' );

    y(i,:) = Y';

   end

end


