
Kalman Filters

NDSU ECE 463/663

Lecture #30

Inst: Jake Glower

Please visit Bison Academy for corresponding

lecture notes, homework sets, and solutions

Recap:

If all of the states are measured, you can use full-state feedback to control a

dynamic system.

Bass-Gura (pole placement) can be used to find the feedback gains

LQR techniques can be used to find the feedback gains

1/sB

A

XsXU

Kx

Kr
R

C

Y

control law

plant

If the states are not measured, they can be estimated with a full-order observer

Bass-Gura can be used to find H

LQR techniques can be used to find H

1/sB

A

C
XsX Y

Plant

1/sB

A

C
XesXe Y

Observer

H

U

U

Kx

Kr
R

What if there is noise?

sX = AX + BU + Fv v = η(0, V2)

Y = CX + w w = η(0, W2)

B

A

C

B

A

C

H

YXsXU

YXsX
^^^

ny

nu

Sensor Noise

State Disturbances

F

Full Order Observer

(Kalman Filter)

Plant

H should reflect the amount of noise on the system:

If the sensor noise is zero, H should be is large

If the state-disturbances are zero, H should be small

What is the "best" H if you have both?

B

A

C

B

A

C

H

YXsXU

YXsX
^^^

ny

nu

Sensor Noise

State Disturbances

F

Full Order Observer

(Kalman Filter)

Plant

Kalman Filter

If "best" as minimizing the variance of the state error

E



X − X

2 


the solution is a LQR observer where

Q = (FV)(FV)T = F ⋅ V2 ⋅ FT

R = WWT = W2

An LQR observer designed with this value of Q and R is termed a Kalman

Filter. (It's just a full-order observer with a specific feedback gain, H.)

Example: 4th Order Heat Equation

Suppose you have a 4-order heat equation with a large disturbance at the

input.

Fv = Bv =













1

0

0

0












v v~N(0, 12)

Determine the optimal observer with sensor noise:

sensor noisew~N(0, W2)

Good sensors: noise 100x less than disturabancesW = 0.01

W = 0.1

Noisy SensorsW = 1

Case 1: Good Sensors (small noise)

W = 0.01

V = 1
W = 0.01; % sensor noise

V = 1; % state disturbance (on U)

Q = F*V*V*F';

R = W*W;

H = lqr(A', C', Q, R)'

A8 = [A, zeros(4,4) ; H*C, A - H*C];

B8 = [B F zeros(4,1) ; B zeros(4,1) H];

 Ref Nx Ny

 1.0000 1.0000 0

 0 0 0

 0 0 0

 0 0 0

 1.0000 0 25.5559

 0 0 18.4321 H shows up here

 0 0 8.0233

 0 0 3.1287

States and State Estimates with State and Sensor Noise: , W ∼ N(0, 0.012) V ∼ N(0, 12)

States and State Estimates.

Case 2: Not so Good Sensors (small noise)

W = 0.1

V = 1

W = 0.01; % sensor noise

V = 1; % state disturbance (on U)

Q = F*V*V*F';

R = W*W;

H = lqr(A', C', Q, R)'

 1.1169

 1.2204

 0.9184

 0.6843

Note that the larger sensor noise has resulted in the observer gains being

reduced.

States and State Estimates with State and Sensor Noise: Sensor Noise 10x larger

Case 3: Noisy Sensors

W = 1

V = 1

W = 1; % sensor noise

V = 1; % state disturbance (on U)

Q = F*V*V*F';

R = W*W;

H = lqr(A', C', Q, R)'

 0.0293

 0.0417

 0.0436

 0.0427

States and State Estimates with State and Sensor Noise: Sensor Noise 100x larger

Note: Only the ratio of Q and R matter. If both disturnances are 10x smaller,

you get the same observer gains (same Kalman filter gains)

W = 0.1; % sensor noise

V = 0.1; % state disturbance (on U)

Q = F*V*V*F';

R = W*W;

H = lqr(A', C', Q, R)'

H =

 0.0293

 0.0417

 0.0436

 0.0427

States and State Estimates with State and Sensor Noise: Both sensor and input noise scaled down 10x

Main Calling Script in Matlab

W = 0.01; % sensor noise

V = 1; % state disturbance (on U)

Q = F*V*V*F';

R = W*W;

H = lqr(A', C', Q, R)'

A8 = [A, zeros(4,4) ; H*C, A - H*C];

B8 = [B F zeros(4,1) ; B zeros(4,1) H];

t = [0:0.001:10]';

N = size(t);

X0 = zeros(8,1);

U = [ones(N), randn(N)*V, randn(N)*W];

C8 = eye(8,8);

D8 = zeros(8,3);

y = step3(A8, B8, C8, D8, t, X0, U);

plot(t,y)

function [y] = step3(A, B, C, D, t, X0, U)

T = t(2) - t(1);

[m, n] = size(C);

npt = length(t);

Az = expm(A*T);

Bz = B*T;

X = X0;

y = zeros(npt, m);

y(1,:) = (C*X + D * (U(1,:)'))';

for i=2:npt

 X = Az*X + Bz*(U(i,:)');

 Y = C*X + D * (U(i,:)');

 y(i,:) = Y';

 end

end

