
LQG/LTR Control
NDSU ECE 463/663

Lecture #31

Inst: Jake Glower

Please visit Bison Academy for corresponding 

lecture notes, homework sets, and solutions



Linear Quadratic Gaussian / Loop Transfer Recovery

Pole Placement:   

Allows you to place the poles wherever you like

Easy to get a specific response

Tends to produce large feedback gains

LQR:

Smaller feedback gains

More robust designs

Harder to get a specific response

LQG/LTR

Uses LQR techniques

To get a specific response



LQG/LTR Formulation

Define a reference mode:  how the plant should behave:
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In state-space, the augmented system is:
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Design with LQR controller where 

Q = α C −Cm 
T
 C −Cm 

R = 1



Let .  This forces .α → ∞ X → Xm

The full-state feedback gains will be
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Example:  Heat Equation

Force a 4-stage RC filer
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Solution:  Define the reference model to be
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Define the augmented system
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To force the error to zero, define Q = CTC

Q = C6'*C6
R = 1;

Case 1:  Q = 106  CTC 

Q6 = 1e6 * C6'*C6
K6 = lqr( A6,  B6,  Q6, R )
 

8.7795   56.0993  248.6748  685.4467  -246.0652  -188.6547  



The poles of the closed-loop system are

eig(A6-B6*K6)
 
  - 2.2976458 + 4.8124056i  Dominant Pole
  - 2.2976458 - 4.8124056i  
  - 5.5921276 + 1.9727695i  
  - 5.5921276 - 1.9727695i  

  - 1. + 3.i Reference Model's Poles               

  - 1. - 3.i                

Note

Two poles are at  - which is the reference model−1 ± j3

The other poles are a little faster - meaning it will sort of track the reference model.

They're not that much faster, however, so tracking will be poor.



Plotting the step response
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Adjust the DC gain to 1.000
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Note that the response is sort of following the reference model.  It's not great,

however.

The response is the "optimal" response, however, for the Q and R selected.

To get a better  response, increase Q



Q6 = 1e12 * C6'*C6;
R6 = 1;
K6 = lqr(A6, B6, Q6, R)
 
75.8304   3026.789  73170.323   923726.06  -967507.21  -75408.799  
 
eig(A6-B6*K6)
 
  - 12.13016 + 29.146288i   
  - 12.13016 - 29.146288i   
  - 29.285062 + 12.072677i  
  - 29.285062 - 12.072677i  
  - 1. + 3.i                
  - 1. - 3.i                

The feedback gains are much larger.  It takes larger gains to force the desired

response.

The closed-loop poles are more reasonable.  The pole at  is the reference model.−1 ± j3

The other poles are the plant - which are much faster than the reference model

(meaning it should be able to track the model)



Step Response (Q = 1e12 C'C), DC gain set to 1.000
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Note

The plant behaves almost identical to the reference model - even though you are

trying to make a heat equation oscillate.

This comes at a cost:  the input is quite large:
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Example 2:  Cart & Pendulum

Use LQG/LTR Techniques for the cart and pendulum system
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Step 1:  Define the reference model

8 second settling time

No overshoot

%Reference Model

Gm = zpk([],[-0.5],1);
 
DC = evalfr(Gm,0);
Gm = Gm / DC;
X = ss(Gm);
Am = X.a;
Bm = X.b;
Cm = X.c;

[n,m] = size(Am);
 
X = zeros(4,1);
Xm = zeros(n,1);



Step 2:  Find the feedback gains

Create the augmented system
Aa = [A, zeros(4,n) ; zeros(n,4), Am];
Ba = [B; zeros(n,1)];
Ca = [C, -Cm];

Find the feedback gains
Q = Ca' * Ca;
R = 1;
 
Ka = lqr(Aa, Ba, Q*1e4, 1);
 
Kx = Ka(1:4);
Km = Ka(5:4+n);
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Step 3:  Adjust the DC gain

As Q goes to infinity, the DC gain goes to 1.000

To use a finite Q, add a gain (similar to Kr) to the input

Pick Kr so that the DC gain is 1.000

 
DC = -[C,0*Cm]*inv(Aa-Ba*Ka)*[0*B;Bm];
Bm = Bm/DC;



Main Loop

while(t < 29.9)
 Ref = sign(sin(0.2*t));
 U = -Km*Xm- Kx*X;
 
 dX = CartDynamics(X, U);
 dXm = Am*Xm + Bm*Ref;
 
 X = X + dX * dt;
 Xm = Xm + dXm * dt;
  
 t = t + dt;
 n = mod(n+1, 5);
 if(n == 0)
    CartDisplay(X, [Cm*Xm;0;0;0], Ref);
 end
 y = [y ; X(1), Cm*Xm, Ref];
end



Response:

Gm = 


0.5

s+0.5



Note

The cart is a 4th-order system

The reference model is a 1st-order

system

It's trying, but it's hard to make a

4th order system behave like a 1st

order one



Response

Gm = 


−

(s+0.5)(s+1)(s+1.2)(s+1.3)




Works much better if you make the

reference model 4th order as well



Response

Gm = 


−

(s+1+j2)(s+1−j2)(s+4)(s+5)




With LQG/LTR, just change the

reference model and you get the desired

response

Much easier to specify the desired

response



Summary

LQG/LTR is another way to design

feedback controllers

The reference model defines how the

system should behave

The control law tries to make the plant

behave like the reference model

The DC gain isn't 1.000

Adding a gain (Kr) at the input allows

you to make the DC gain 1.000
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% Cart and Pendulum

% Lecture %31

% LQG/LTR

 

dt = 0.01;

t = 0;

%Plant

A = [0,0,1,0;0,0,0,1;0,-4.9,0,0;0,14.7,0,0];

B = [0;0;0.5;-0.5];

C = [1,0,0,0];

 

%Reference Model

Gm = zpk([],[-0.5],1);

 

DC = evalfr(Gm,0);

Gm = Gm / DC;

X = ss(Gm);

Am = X.a;

Bm = X.b;

Cm = X.c;

[n,m] = size(Am);

 

X = zeros(4,1);

Xm = zeros(n,1);

 

A6 = [A, zeros(4,n) ; zeros(n,4), Am];

B6 = [B; zeros(n,1)];

C6 = [C, -Cm];

 

Q = C6' * C6;

R = 1;

 

K6 = lqr(A6, B6, Q*1e4, 1);

 

Kx = K6(1:4);

Km = K6(5:4+n);

 

DC = -[C,0*Cm]*inv(A6-B6*K6)*[0*B;Bm];

Bm = Bm/DC;

 

n = 0;

y = [];

while(t < 29.9)

 Ref = sign(sin(0.2*t));

 U = -Km*Xm- Kx*X;

 

 dX = CartDynamics(X, U);

 dXm = Am*Xm + Bm*Ref;

 

 X = X + dX * dt;

 Xm = Xm + dXm * dt;

  

 t = t + dt;

 n = mod(n+1, 5);

 if(n == 0)

    CartDisplay(X, [Cm*Xm;0;0;0], Ref);

 end

 y = [y ; X(1), Cm*Xm, Ref];

end

 

hold off;

t = [1:length(y)]' * dt;

plot(t,y);


