ECE 476/676 - Homework #3

Binary Outputs, Binary Inputs - Due Monday, September 15th

Transistor Switch

- 1) Write a Python program which turns on
 - GP16 (LED), and
 - GP18 (not used at present)

when button GP15 is pressed, and turns these pins off when GP15 is released.

Collect data to verify your Python program is working correctly.

- 2) The Star LED in your lab kit is a 1W LED with a built-in 6.8 Ohm resistor
 - Rd = 6.8 Ohms (hard-wired in series with the LED)
 - Vd = 3.0V @ 330mA
 - 200 Lumens @ 330mA

Design a circuit which turns on and off the 1W white LED in your lab kit at 10mA when GP18 goes high and low.

- Verify that the LED is turning on and off with GP18
- Measure the current when the LED is on (measure the voltage across a resistor and compute I)
- 3) Design a circuit which turns on and off the 1W white LED at 5V when GP18 goes high and low.
 - Circuit to the right
 - Pick Rb so that Ib = 10mA (approx)

Verify that the LED turns on and off when GP18 goes high and low

- Vbe = 0.7V when on (the voltage drop across a silicon diode)
- Vce = 0.2V when on (the transistor is saturated)
- The LED is a *lot* brighter when turned on with a transistor switch

Strobe Light (take 1)

- 4) Write a Python program which
 - Prompts you for the period of a strobe light in ms, then
 - Turns on the 1W white LED for 1ms
 - Then off for N-1 ms where N is the period in ms.
- 5) Run your program on your Pico board and collect data to verify it works.

Strobe Light (take 2)

- 6) Write a Python program which
 - Turns on the 1W white LED for 1ms, and
 - Turns it off for N ms

Where N is adjustable using the buttons GP14 and GP15

- GP15 increases N
- GP14 decreases N
- 7) Run your program on your Pico board and collect data to verify it works.

Demostration

- 8) Demonstrate either working program
 - In-person
 - With a video