
4. Subroutines

Introduction:

Subroutines are programs you can call from other programs. These go by various names (funcitons in

matlab, subroutines in C, definitions in Python, etc) but they all serve the same purpose:

Break your program into smaller routines which can be tested (supporting bottom-up and top-down

programming)

Allow you to reuse code from program to program.

Usually, subroutines are passed parameters. After some computations, they can also return parameters.

This lecture looks at how subroutines are defined in MicroPython as well as how to return parameters to

the main routine.

Subroutines

In MicroPython, subroutines are defined by the keyword def, sort for define. Ths simplest example

would be a routine which

is passed nothing,

returns nothing, and

simply prints 'hello' when called:

When you press the run command

Python installs the subroutine defed as SayHello

It then runs the main routine (instruction following all of the definitions)

Open Save Run Stop

def SayHello():
 print('hello')

Start of main routine
SayHello()

shell

>>>
hello

In this example, note that

The subroutine is called SayHello

Nothing is passes to this routine as indicated by the ()

The definition is terminated with a colon (:)

The code within the subroutine must be indented as per the Python standard

Also note that once you run the routine, the function SayHello() is available to call from the shell

window.

NDSU Subroutines ECE 476

JSG - 1 - March 22, 2024

You can pass parameters to subroutines. For example, if you want to display numbers from 0..N, you

could write a routine like the following:

Open Save Run Stop

def CountToN(N):
 for i in range(1,N+1):
 print(i)

Start of main routine
CountToN(5)

Thonny Program Window

>>>
1
2
3
4
5

You can also pass multiple parameters by simply including them in the definition

Open Save Run Stop

def Multiply(A, B):
 C = A * B
 print(A, ' * ', B, ' = ',C)

Start of main routine
Multiply(4,6)

Thonny Program Window

>>>
4 * 6 = 24

>>> Multiply(8,7)
8 * 7 = 56

NDSU Subroutines ECE 476

JSG - 2 - March 22, 2024

Returning Parameters

Subroutines in Python can only return zero or one variable. That variable could be an array, a matrix, or

a class object however - so that's not very limiting.

Example where one number is returned:

Open Save Run Stop

Example of Returning One Number
def Multiply(A, B):
 C = A * B
 return(C0)

Start of main routine
X = Multiply(4,6)
print(X)

Thonny Program Window

>>>
24

>>> C = Multiply(8,7)
>>> print(C)
56

Example where four numbers are returned in a matrix:

Open Save Run Stop

Example of Returning four Numbers
def Operate(A, B):
 C0 = A + B
 C1 = A - B
 C2 = A * B
 C3 = A / B
 return([C0, C1, C2, C3])

Start of main routine
X = Operate(4,6)
print(X)

Thonny Program Window

>>>
[10, -2, 24, 0.666667]

>>> C = Multiply(8,7)
>>> print(C)
[15, 1, 56, 1.4142857]

NDSU Subroutines ECE 476

JSG - 3 - March 22, 2024

Example where four numbers are returned separately

If you receive four variables, the results are unpacked into each variable separately

If you receive one variable, the results are unpacked into a vector containing four numbers

Open Save Run Stop

Example of Returning Four Numbers
def Operate(A, B):
 C0 = A + B
 C1 = A - B
 C2 = A * B
 C3 = A / B
 return(C0, C1, C2, C3)

Start of main routine
a, b, c, d = Operate(4,6)
print(a, b, c, d)

Thonny Program Window

>>>
10, -2, 24, 0.666667

>>> a, b, c, d = Operate(8,7)
>>> print(a, b, c, d)
15, 1, 56, 1.4142857

>>> a = Operate(8,7)
>>> print(a)
(15, 1, 56, 1.4142857)

>>> print(a[2])
56

NDSU Subroutines ECE 476

JSG - 4 - March 22, 2024

Fun with Subroutines: Resistors in Series & Parallel

As an example of where subroutines can be useful, let's write routines to add resistors in series and

parallel. Using those routines, write a third routine to solve for Rab if R is changed from 300 Ohms

a b
50

250

75

450

300 200

R

Starting out, define routines for series and parallel resistors:

Open Save Run Stop

def Series(R1, R2):
 Rnet = R1 + R2
 return(Rnet)

def Parallel(R1, R2):
 Rnet = 1 / (1/R1 + 1/R2)
 return(Rnet)

Ra = Series(300,200)
Rb = Parallel(Ra, 450)
Rc = Series(Rb, 75)
Rd = Parallel(Rc, 250)
Rab = Series(Rd, 50)
print('Rab = ',Rab)

Shell

>>>
Rab = 188.7588

Same as before, Rab = 188.7588 Ohms

You could also create a third program to find Rab when the 300 Ohm resistor changes:

NDSU Subroutines ECE 476

JSG - 5 - March 22, 2024

Open Save Run Stop

def Series(R1, R2):
 Rnet = R1 + R2
 return(Rnet)

def Parallel(R1, R2):
 Rnet = 1 / (1/R1 + 1/R2)
 return(Rnet)

def Circuit(R):
 Ra = Series(R,200)
 Rb = Parallel(Ra, 450)
 Rc = Series(Rb, 75)
 Rd = Parallel(Rc, 250)
 Rab = Series(Rd, 50)
 return(Rab)

for R in range(100,400,100):
 Rab = Circuit(R)
 print('R = ',R,' Rab = ', Rab)

Shell

>>>
R = 100 Rab = 176.2376
R = 200 Rab = 183.5615
R = 300 Rab = 188.7588

NDSU Subroutines ECE 476

JSG - 6 - March 22, 2024

Fun with Subroutines: Convolution and Rolling Dice:

In the previous lecture, we looked at convolution and how it applies to rolling dice. Rather than having

to write a convolution routine each time, let's create a subroutine which convolves two vectors.

Starting out, let's write a routine similar to Matlab's linspace(a,dx,b) which

Creates a vector

Starting at a

Ending at b

With step size dx

Open Save Run Stop

def linspace(x0, dx, x1):
 x = x0
 A = []
 while(x <= x1):
 A.append(x)
 x += dx

def display(A):
 n = len(A)
 for k in range(0,n):
 print('{: 4.0f}'.format(k),'{: 10.3f}'.format(A[k]))

k = linspace(0,1,5)
display(k)

shell

>>>
 0 0.000
 1 1.000
 2 2.000
 3 3.000
 4 4.000
 5 5.000

NDSU Subroutines ECE 476

JSG - 7 - March 22, 2024

Now that this works, write a routine which generates a uniform distribution over the interval [a, b]:

Open Save Run Stop

def linspace(x0, dx, x1):
 x = x0
 A = []
 while(x <= x1):
 A.append(x)
 x += dx

def display(A):
 n = len(A)
 for k in range(0,n):
 print('{: 4.0f}'.format(k),'{: 10.3f}'.format(A[k]))

def uniform(a,b):
 A = []
 N = b-a+1
 for i in range(0,a):
 A.append(0)
 for i in range(a,b+0.01):
 A.append(1/N)
 return(A)

print('4-sided die')
d4 = uniform(1,4)
display(d4)
print('6-sided die')
d6 = uniform(1,6)
display(d6)

shell

>>>
4-sided die
 0 0.000
 1 0.250
 2 0.250
 3 0.250
 4 0.250
6-sided die
 0 0.000
 1 0.167
 2 0.167
 3 0.167
 4 0.167
 5 0.167
 6 0.167

NDSU Subroutines ECE 476

JSG - 8 - March 22, 2024

Now that this works, add a confolution routine

Open Save Run Stop

def linspace(x0, dx, x1):
 x = x0
 A = []
 while(x <= x1):
 A.append(x)
 x += dx

def display(A):
 n = len(A)
 for k in range(0,n):
 print('{: 4.0f}'.format(k),'{: 10.3f}'.format(A[k]))

def uniform(a,b):
 A = []
 N = b-a+1
 for i in range(0,a):
 A.append(0)
 for i in range(a,b+0.01):
 A.append(1/N)
 return(A)

def conv(A, B):
 nA = len(A)
 nB = len(B)
 nC = nA + nB - 1
 for n in range(0,nC):
 C.append(0)
 for k in range(0,nA):
 if(((n-k)>=0)&((n-k)<nB)&(k<nA)):
 C[n] += A[k]*B[n-k]
 return(C)

d4 = uniform(1,4)
d6 = uniform(1,6)
d4d6 = conv(d4,d6)
print('d4 + d6')
display(d4d6)

shell

>>>
d4 + d6
 0 0.000
 1 0.000
 2 0.042
 3 0.083
 4 0.125
 5 0.167
 6 0.167
 7 0.167
 8 0.125
 9 0.083
 10 0.042

The probability d4+d6 = 7 is 0.167

NDSU Subroutines ECE 476

JSG - 9 - March 22, 2024

Note: With this routine, you can also multiply polynomials

Find

y = (3 + 2x + x2)(7 + 6x + 5x2 + 4x3)

This is a convolution problem

Y = [3, 2, 1] ∗ ∗[7, 6, 5, 4]

Open Save Run Stop

def linspace(x0, dx, x1):
 x = x0
 A = []
 while(x <= x1):
 A.append(x)
 x += dx

def display(A):
 n = len(A)
 for k in range(0,n):
 print('{: 4.0f}'.format(k),'{: 10.3f}'.format(A[k]))

def uniform(a,b):
 A = []
 N = b-a+1
 for i in range(0,a):
 A.append(0)
 for i in range(a,b+0.01):
 A.append(1/N)
 return(A)

def conv(A, B):
 nA = len(A)
 nB = len(B)
 nC = nA + nB - 1
 for n in range(0,nC):
 C.append(0)
 for k in range(0,nA):
 if(((n-k)>=0)&((n-k)<nB)&(k<nA)):
 C[n] += A[k]*B[n-k]
 return(C)

A = [2,3,1]
B = [7,6,5,4]
C = conv(A,B)
display(C)

shell

>>>
 0 21.000
 1 32.000
 2 34.000
 3 28.000
 4 13.000
 5 4.000

The answer is

21 + 32x + 34x2 + 28x3 + 13x4 + 4x5

NDSU Subroutines ECE 476

JSG - 10 - March 22, 2024

