
5. Binary Outputs
Machine & Time Library - Parallel Outputs

Morse Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0

GP1

GND

GP2

GP3

GP4

GP5

GND

GP6

GP7

GP8

GP9

GND

GP10

GP11

GP12

GP13

GND

GP14

GP15 GP16

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28

GND

GP27

GP26

RUN

GP22

GND

GP21

GP20

GP19

GP18

GND

GP17

TFT.SCK

TFT.MOSI

TFT.MISO

TFT.CS

TFT.DC

TFT.RST

TFT.RST

TFT.INT

TFT.SDA

TFT.SCL

RGB LED

Buzzer

LED1

LED2Button1

Button2

ADC0(X)

ADC1(Y)

ADC2

ADC_VREF

USB

Introduction:

Similar to the PIC processor we covered in ECE 376, the Raspberry Pi Pico has 25 I/O pins (termed

GPIO or General Purpose Input / Output pins). Unlike may other microcontrollers, these pins are not

grouped in to clusters of eight: instead they are simply stand-alone pins.

Each of the I/O pins can be used for binary inputs or binary outputs. Many pins have can also be used for

other things, such as UART or SPI communications (coming up later). The logic levels are

0V - 0.8V: logic level 0

2.0V - 3.3V: logic level 1

This lectures looks at

Driving an LED

Driving a Buzzer

- Beep Five Times

- Morse Code

More Power

- BJT (speaker, solenoid)

- H-Bridge

Parallel Outputs - LED Array

Driving Multiple Outputs (PortA_Write)

Display Routine (send to terminal pin values)

Timing with Binary Outputs

- Counter

- Morse Code

Frequency Out

NDSU Binary Outputs ECE 476

Making a Light Blink

A simple program which makes the LED on pin 16 blink ten times is:

1
2
3
4
5
6
7
8
9

from machine import Pin
from time import sleep

LED = Pin(16, Pin.OUT)

for i in range(0,10):
 LED.toggle()
 sleep(0.1)
LED.value(0)

The way this program works is as follows:

Lines 1 & 2: These import routines used later on in the program

Line 4: This sets up GPIO pin 16 to be an output pin

Line 7: This uses the routine toggle() from routine machine to toggle the LED

Line 8: This calls the routine sleep() to pause 0.1 second

Line 9: The LED is then turned off at the end of the program

You can also make the on-board beeper chirp five times with a simple change:

1
2
3
4
5
6
7
8
9

from machine import Pin
from time import sleep

Beeper = Pin(13, Pin.OUT)

for i in range(0,10):
 Beeper.toggle()
 sleep(0.1)
Beeper.value(0)

More details on how this work follows...

Background - Modules

One nice feature of Python is you can build upon subroutines that you wrote or that other people wrote.

Some of the more commonly used and useful subroutines have been standardized and placed into files

termed modules.

This is similar to C programmed where you incorporate previously-written subroutines using include

statements. For example, a C program usually starts with something like this:

// Start of a C program
#include <stdio.h>
#include <math.h>

Once you include these files, you have access to and can call the subroutines defined in the module.

NDSU Binary Outputs ECE 476

You do the same thing in Python. In Python, the start of your program usually starts with

#Start of a Python program
import machine
import time
import math

Once you import the module, you have access to and can use the routines (definitions in Python-speak)

defined in these routines.

One slight difference with Python is in the syntax for calling routines within a module. To access

routines within math and time, for example, you would use the following code:

import math
import time

x = 2 * math.cos(1.74 * math.pi)
time.sleep(0.1)

When you call a routine from the math module, you need to tell Python

The module you are using, and

The routine you want to use

In the above example, we're using the routines cos and pi from module math. This has it's good points: if

two modules have routines with the same name, there's no conflict: math.pi is different than

MyFunction.pi. It also has it's bad points: the code can get kind of clunky to write and read.

So, Python also allows you to just import certain functions, allowing you to access them just by using

their names. Repeating the previous example, you could also write

from math import
sin, cos, pi
from time import sleep

x = 2 * cos(1.74 * pi)
sleep(0.1)

You just have to make sure that the function names (sin, cos, pi, sleep) don't conflict with other functions

or variable names in your program.

If you want to know what modules are available to use, in the shell window type:

>>> help('modules')

random machine math time ...

(a complete list modules is in the appendix).

If you want to see what's inside a given module, such as machine or time, type

NDSU Binary Outputs ECE 476

>>> import machine
>>> dir(machine)

['PWM', 'Pin', time_pulse_us', ...]

>>> import time
>>> dir(time)

['sleep', 'sleep_ms', 'sleep_us', ...]

To get some help on a specific function within a module, use the help function:

>>> help(machine.PWM)
object <class 'PWM'> is of type type
 init -- <function>
 deinit -- <function>
 freq -- <function>
 duty_u16 -- <function>
 duty_ns -- <function>

A complete list of modules and functions in the appendix1.

Binary Outputs (Software)

Starting out, let's turn on and off an LED. With the RPi-Pico, the GPIO pins are binary signals:

Logic 0 = 0V, capable of sinking up to 30mA

Logic 1 = 3.3V, capable of sourcing up to 30mA

Each GPIO pin can be set up for either output (this lecture) or input (next lecture). To do this, a

low-level routine Pin is used, which is in the module machine.

To set up pin #16 to output, use the code:

red = Pin(16,Pin.OUT)

To write to this pin or check its value, type in:

red.toggle() toggle the pin on/off

red.value(1) set the pin to ON

red.value(0) set the pin to OFF

red.value() return 1 if on, 0 if off

red.low() set the pin to OFF

red.high() set the pin to ON

To control the timing of a light turning on and off, routines from the module time are used

time.sleep(1.234) sleep for 1.234 seconds

time.sleep_ms(1.234) sleep for 1.234 milli-seconds

time.sleep_us(1.234) sleep for 1.234 microseconds

1 note: The appendix is a place to put stuff which would kill the flow of your document. A useful tool in technical documents.

NDSU Binary Outputs ECE 476

For example, the following program

Sets up pin 16 for output,

Turns on pin 16 for one second,

Turns off pin 16 for one second, and then

Toggles pin 16 ten times every 100ms

from machine import Pin
from time import sleep

LED = Pin(16, Pin.OUT)

print('Light On')
LED.value(1)
sleep(1)

LED.value(0)
sleep(1)

for i in range(0,10):
 LED.toggle()
 sleep(0.1)

Sidelight: Using Arduino Syntax

Python on an Arduino and Raspberry Pi uses slightly different syntax for output pins. For these, the

syntax for writing to an I/O pin is

GPIO(pin, value)

where pin is the pin number and value is 1 or 0 for on/off.

If you add a subroutine, GPIO, you can mimic this functionality:

LED defines the I/O pins being used

Each pin is set up for binary output

from machine import Pin
from time import sleep_ms

LED = [16,17,18,19,20,21,22,26]
for i in range(0, len(LED)):
 LED[i] = Pin(LED[i],Pin.OUT)

def GPIO(X, Value):
 if((Value > 1) | (Value < 0)):
 LCD[X].toggle()
 else:
 LED[X].value(Value)

You can then write to the I/O pins using Arduino syntax:

GPIO(4,1) turn on output #4 (pin 19)

GPIO(4,0) turn off output #4 (pin 19)

GPIO(4,-1) toggle output #4 (pin 19)

GPIO(4,2) another way to toggle pin #4

NDSU Binary Outputs ECE 476

Binary Outputs (Hardware)

A RPi-Pico can drive more than just the LEDs on your development board. If you want to drive external

devices, some simple electronic circuits work

Loads: < 3.3V and < 12mA:

If you're driving something that requires less than 30mA and less than 3.3V, you can drive the device

directly from the GPIO pin. For example, suppose you want to drive a red LED with the following

specifications at 10mA.

Digikey color wavelength Vf @ 20mA mcd @ 20mA price

732-5013-ND red 628nm 2.0V 2600mcd $0.18

Vf tells you the voltage drop across the LED when turned on. Since the GPIO pin outputs 3.3V, to set

the current to 10mA, you need a 130 Ohm resistor to limit the current:

R = 


3.3V−2.0V

10mA


 = 130Ω

The brightness of the LED will then be proportional to the current:




10mA

20mA


 2600mcd = 1300mcd

2.0V3.3V
R = 130

10mA

GPx

RPi-Pico

Red
LED

If driving a load that needs less than 3.3V and less than 35mA,
you can connect it directly to the RPi-Pico with just a resistor (to limit the current)

Loads: >3.3V or >12mA:

If your load needs more than 3.3V or more than 30mA, the GPIO pin can't drive that device directly. If

you add a BJT transistor or a MOSFET as a buffer, however, it can.

For example, design a circuit which allow the Pi-Pico to drive a 3W white LED:

ebay color Vf Output price

Lighthouse LEDs warm white 3.6V @ 750mA 200lm @ 750mA $2.06

In this case, a Pi-Pico can't drive the LED directly: it needs too much voltage and too much current. A

Pi-Pico can drive it using a BJT transistor, however.

NDSU Binary Outputs ECE 476

If you use a 6411 NPN transistor,

Digikey Vce (sat) hfe (min) Ic (max) hfe

2SC6144SG 360mV 200 10A $0.85

you can set the current to 750mA with the following circuit. Assuming a 5V source, the calculations are:

Rc = 


5V−3.6V−0.36V

750mA


 = 1.38Ω

Ib >
Ic

h fe
=

750mA

200
= 3.75mA

Let Ib = 10mA

Rb = 


3.3V−0.7V

10mA


 = 260Ω

3.3V
GPx

RPi-Pico

+5V

Rc

1.38 Ohms

Vf = 3.6V

2SC6144
NPN

Ic = 750mA

Ib = 10mA

Rb = 260

e

b

c

0.7V

0.36V

3.94V

Red LED

If your load needs more than 3.3V or more than 35mA, you can use a BJT transistor as a switch

Note that using a BJT transistor as a switch works for just about any load that you want to turn on and

off. The transistor doesn't really care about what the load is - as long as it needs less than 3A, it can turn

the load on (GPx = 3.3V) or off (GPx = 0V).

max(Ic) = h fe ⋅ Ib

 = 300 ⋅ 10mA = 3A

This makes a BJT switch very versatile and very common. With it, you can turn on and off

LED lights

DC motors

Heaters

Speakers,

etc

providing they need less than 3A when on.

NDSU Binary Outputs ECE 476

Note on Inductive Loads: As a slight caveat, if your load is inductive in nature:

Solenoids

DC motors

you need to include a flyback diode. This diode limits the voltage at Vc to +12.7V in the example below.

This is important since

For inductors, v = L
di

dt

When the transistor turns off, the current suddenly goes to zero

This sudden drop in current can cause the voltage to shoot to infinity, burning out your transistor.

What's happening is

Energy is stored in the inductor as E =
1

2
Li2

When the transistor turns off, the stored energy must go somewhere.

To bleed off the stored energy, the inductor will raise its voltage until it finds a path to ground. With the

flyback diode, this voltage is limited to 12.7V

3.3V
GPx

RPi-Pico

+12V

2SC6144
NPN

Ib = 10mA

Rb = 260

e

b

c

0.7V

M
flyback
diode

diode turns on if

Vc > 12.7V

If you are turning on and off an inductive load (DC motor, solenoid),

add a flyback diode to limit the voltage at Vc

NDSU Binary Outputs ECE 476

Forward & Reverse: H-Bridge

Finally, if you want to apply a positive and negative voltage to a load while using just a single power

supply, a H-bridge can be used.

An H-bridge gets its name from the shape - it looks like the letter 'H'. The way it works is

If transistors T1 and T4 are on,

- V4 is pulled high (11.8V),

- V5 is pulled low (0.2V), and

- Current flows left to right (forward)

If transistor T3 and T2 are on,

- V5 is pulled high (11.8V),

- V4 is pulled low (0.2V), and

- Current flows right to left (reverse)

If all transistors are off

- Current is zero

+12V +12V

Vc

Vd

Va

Vb

Rb

Rb

Rb

Rb

Load
V4 V5

I(load)

T1
PNP

T2
NPN

T3
PNP

T4
NPN

H-Bridge. This allows you to apply positive and negative voltages to a load with a single power supply

The net results, is with an H-bridge and a since +12V power supply, you can apply

+11.6V to the load (T1 and T4 on),

-11.6V to the load (T2 and T3 on), and

0.0V to the load (all transistors off)

This allows you to

Drive a speaker forward (+) and back (-)

Drive a motor forward (+) and in reverse (-)

etc

NDSU Binary Outputs ECE 476

In terms of how to do this with a RPi-Pico, probably the easiest way to use an H-bridge it to get one off

of ebay:

L298N Dual H-Bridge from ebay (search: Arduino H Bridge)

The L298N is actually has two H-bridges - for when you want to drive two loads (such as two speakers,

two DC servo motors, or a single stepper motor. More on this later). The wiring for the H-bridge is as

follows.

Connect +5V and ground to the left screw terminals on the bottom. This provides the +5V needed

by the electronics on this PCB.

Connect your + power to the leftmost pin. This can be anything in the range of 5V..35V DC

Connect your load to the screw terminal on the left (H-bridge #1) or right (H-bridge #2)

Finally, connect two GP output pins on your RPi-Pico board to

IN1/2 to control H-bridge #1 or

IN3/4 to control H-bridge #2

+5V0VVcc = 5..35V

A

B

C

D

H-Bridge

#1

H-Bridge
#2

IN1/2 IN3/4

Wiring for a 298N Dual H-Bridge

NDSU Binary Outputs ECE 476

In terms of software, you can control the voltage to the load using two GP output pins:

IN-1 IN-2 Vab IN-3 IN-4 Vcd

0V 0V 0 V 0V 0V 0 V

0V 3.3V + Vcc 0V 3.3V + Vcc

3.3V 0V - Vcc 3.3V 0V - Vcc

3.3V 3.3V 0 V 3.3V 3.3V 0 V

Sidelight: The 298N is really designed to operate off of 5V rather than 3.3V from the RPi-Pico. The

transition from logic 0 to logic 1 usually happens right around 1.6V for TTL logic gates, however -

meaning that the 298N will recognize 3.3V as logic 1. You don't need to add any buffer circuits between

the Pico and the 298N.

Binary Outputs: Ports

In the previous examples, the Pi-Pico was driving a single pin high and low. What if you want to drive

multiple pins high and low together? Or, to put it another way, can you group sets of pins together and

call the grouping something like Port A?

Many microcontrollers, including PICs, group the I/O pins into clusters of 8, termed ports. With the

RPi-Pico, no such groupings are made: each I/O pin is a stand-alone binary pin. So, the question arises

Can you group IO pins together to create a port?

Can I set up the Pi-Pico so that when I write to PortA, I'm writing to eight LEDs at once?

Pico LED Array Resistor Array
330 Ohm

GP16

GP17

GP18

GP19

GP20

GP21

GP22

GP27

PortA

Problem: Can you group GPIO pins together to create a port?

The answer, of course is yes: you can do almost anything in software. The trick is to write a subroutine

which allows you to treat a group of pins like it's a single port.

NDSU Binary Outputs ECE 476

With the Pi-Pico, all GPIO pins are treated as stand-alone pins. This has it's good and bad features:

good: you can assign pins wherever you like

bad: you can't write to 8 bits at a time by writing to a port.

With software, you can mimic a port, however. In this example

Pins 16..26 are assigned to PORTA (16 = LSB, 26 = MSB)

By writing to PORTA with BinaryOut(X), you write to all eight bits

Note that this solution has it's good and bad features:

good: you can assign pins wherever you like

bad: you can't write to 8 bits at a time by writing to a port.

bad: there is a slight time delay between when the first pin is set and cleared (pin 16) and the last

pin (pin 26)

from machine import Pin
from time import sleep_ms

PORTA = [16,17,18,19,20,21,22,26]
for i in range(0, len(PORTA)):
 PORTA[i] = Pin(PORTA[i],Pin.OUT)

def display():
 X = ''
 n = len(PORTA)
 for i in range(0, n):
 X += str(PORTA[n-i-1].value)
 print(X)

def BinaryOut(X):
 for i in range(0, len(PORTA)):
 if(X & (1 << i)):
 PORTA[i].value(1)
 else:
 PORTA[i].value(0)

for i in range(0, 65535):
 BinaryOut(i)
 display()
 sleep_ms(50)

BinaryOut(0)

NDSU Binary Outputs ECE 476

Fun With Binary Outputs: Blinking Light

Input a number from the keyboard

Blink the light N times

from machine import Pin
from time import sleep_ms

LED = Pin(16,Pin.OUT)

while(1):
 N = int(input('Number of Blinks: '))
 for i in range(0,2*N)
 LED.toggle()
 sleep_ms(100)

Fun with Binary Outputs: Night Rider

A second example, turn on a single LED and have it bounce back and forth.

On power up, GP15 is on and the rest of the LEDs are off

Every 100ms, the LED shifts left until it reaches GP0

Once that happens, the LED starts to shift right until it reaches GP15

At that point the LED starts to shift left again, etc.

151413121110987654320 1

Initially, LED shifts left

When it reaches GP0, the LED shifts right

To make this work,

Assign 16 pins to PortA with GP0 being the MSB, GP15 being the LSB

Make all 16 bits output (routine Init())

Set up a routine where when you pass a 16-bit number to PortA_Write, the value of each GP port

is set or cleared based upon the value of bit i

Finally, in the main routine

Starting with x = 0x0001

Start shifting left every 100ms, writing x to PortA each loop

When X = 0x8000, start shifting right

and so on.

NDSU Binary Outputs ECE 476

Blink the lights on PORTA up and down

from machine import Pin
from time import sleep_ms

PortA = [15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0]

def Init():
 for i in range(0, len(PortA)):
 PortA[i] = Pin(PortA[i], Pin.OUT)

def PortA_Write(X):
 for i in range(0, len(PortA)):
 if(X & (1<<i)):
 PortA[i].value(1)
 else:
 PortA[i].value(0)

def PortA_Read():
 X = 0
 for i in range(0, len(PortA)):
 X += (1<<i) * PortA[i].value()
 return(X)

dir = 1
x = 1
Init()
while(1):
 PortA_Write(x)
 if(x & 0x8000):
 dir = -1
 if(x & 1):
 dir = 1
 if(dir == 1):
 x = x << 1
 else:
 x = x >> 1
 sleep_ms(100)

Fun with Binary Outputs: Morse Code

Finally, lets come up with a routine which outputs NDSU in Morse Code using bottom-up programming.

Start with routines that output a dit (100ms on, 100ms off) and a dah (300ms on, 100ms off)

Once that works, write routines to output N, D, S, and U in Morse code

Once that works, string them all together to play NDSU every second.

NDSU Binary Outputs ECE 476

Morse Code

from machine import Pin
from time import sleep_ms

Beeper = Pin(13, Pin.OUT)

def Dit():
 Beeper.value(1)
 sleep_ms(100)
 Beeper.value(0)
 sleep_ms(100)

def Dah():
 Beeper.value(1)
 sleep_ms(300)
 Beeper.value(0)
 sleep_ms(100)

def Pause():
 sleep_ms(300)

def _N():
 Dah()
 Dit()
 Pause()

def _D():
 Dah()
 Dit()
 Dit()
 Pause()

def _S():
 Dit()
 Dit()
 Dit()
 Pause()

def _U():
 Dit()
 Dit()
 Dah()
 Pause()

while(1):
 _N()
 _D()
 _S()
 _U()
 sleep_ms(1000)

NDSU Binary Outputs ECE 476

Summary:

With the Pi-Pico, you can turn on and off devices using the general purpose pins.

If the load needs less than 3.3V and less than 12mA, the Pi-Pico can drive that device directly,

using only a resistor to limit the current,

If the load needs more voltage or current, the Pi-Pico can drive the device using a BJT transistor as

a switch or an H-bridge as a buffer.

With software, you can also cluster GPIO pins together to create ports. These allow you to drive

multiple devices with a single Pi-Pico board.

NDSU Binary Outputs ECE 476

Appendix:

PWM Outputs

The following program sets up pin 16 for

PWM output

1000 Hz

Duty Cycle varies from 0 to 100%

note:

duty_u16(x) sets the duty cycle from 0 (x = 0x0000) to 100% (x = 0xFFFF)

duty_ns(x) sets the on-time as x nanosecondns02

from machine import Pin
from time import sleep

red = Pin(16, Pin.OUT)
red16 = PWM(Pin(16))
red16.freq(1000)
x = 0
while(1):
 red16.duty_u16(x)
 x = (x+1) & 0xFFFF
 sleep_us(10)

Pulse With (ns)
Set the frequency to 50Hz (period = 20ms)

Set the pulse width from 0.5ms (500,000ns) to 3.0ms (3,000,000ns)

Typical for servo-motor controls

from machine import Pin
from time import sleep

red = Pin(16, Pin.OUT)
red16 = PWM(Pin(16))
red16.freq(50)
x = 500_000
dx = 1000
while(1):
 red16.duty_ns(x)
 x += dx
 if(x > 3_000_000):
 dx = -dx
 if(x < 500_000):
 dx = abs(dx)
 sleep_us(10)

NDSU Binary Outputs ECE 476

Standard Modules Available

>>> help('modules')
__main__ array framebuf random
_asyncio asyncio/__init__ gc re
_boot asyncio/core hashlib requests/__init__
_boot_fat asyncio/event heapq rp2
_onewire asyncio/funcs io select
_rp2 asyncio/lock json socket
_thread asyncio/stream lwip ssl

_webrepl binascii machine struct

aioble/__init__ bluetooth math sys

aioble/central builtins micropython time

aioble/client cmath mip/__init__ uasyncio
aioble/core collections neopixel uctypes
aioble/device cryptolib network urequests
aioble/l2cap deflate ntptime webrepl
aioble/peripheral dht onewire webrepl_setup
aioble/security ds18x20 os websocket
aioble/server errno platform
Plus any modules on the filesystem

Functions within machine

>>> import machine
>>> dir(machine)

['__class__', '__name__', 'ADC', 'I2C', 'I2S', 'PWM', 'PWRON_RESET', 'Pin',

'RTC', 'SPI', 'Signal', 'SoftI2C', 'SoftSPI', 'Timer', 'UART', 'WDT',
'WDT_RESET', '__dict__', 'bitstream', 'bootloader', 'deepsleep',
'dht_readinto', 'disable_irq', 'enable_irq', 'freq', 'idle', 'lightsleep',
'mem16', 'mem32', 'mem8', 'reset', 'reset_cause', 'soft_reset',

'time_pulse_us', 'unique_id']

Functions within time

>>> import time
>>> dir(time)
['__class__', '__name__', '__dict__', 'gmtime', 'localtime', 'mktime',

'sleep', 'sleep_ms', 'sleep_us', 'ticks_add', 'ticks_cpu', 'ticks_diff',

'ticks_ms', 'ticks_us', 'time', 'time_ns']

NDSU Binary Outputs ECE 476

