
7. Serial I/O
Machine & Time Library, LED Cube

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0

GP1

GND

GP2

GP3

GP4

GP5

GND

GP6

GP7

GP8

GP9

GND

GP10

GP11

GP12

GP13

GND

GP14

GP15 GP16

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28

GND

GP27

GP26

RUN

GP22

GND

GP21

GP20

GP19

GP18

GND

GP17

TFT.SCK

TFT.MOSI

TFT.MISO

TFT.CS

TFT.DC

TFT.RST

TFT.RST

TFT.INT

TFT.SDA

TFT.SCL

RGB LED

Buzzer

LED1

LED2Button1

Button2

ADC0(X)

ADC1(Y)

ADC2

ADC_VREF

USB

Introduction:

So far, we've been using the input / output pins in a parallel fashion: each I/O pin is connected to a
different LED or a different button. There is nothing wrong, per say, in doing so: the Pi-Pico has 26 I/O
pins available on the breakout boards, and you don't get a refund if some pins are not used. However,
parallel I/O is not the intended use of the I/O pins on a Pi-Pico

One of the reasons to avoid parallel I/O is that many of the pins have other functions:

GP0 and GP1 can be used as a serial port. If you want to read a GPS sensor or set up a wireless
link to another processor, these pins are tied up for serial communications.

GP 2..11 are going to be used by the graphics display on the Pico Breakout Board.

Pins 13..17 are used by the buzzer, buttons, and LEDs on the Pico Breakout Board

Pins 26..28 are used for analog inputs - such as reading the position of a joystick

The net results is there aren't a lot of unused pins on the Pi-Pico chip.

Fortunately, we don't need a lot of pins to talk to a large number of binary inputs and/or outputs. With a
serial interface - something we'll talk about in this lecture - we'll be able to read and write to an
essentially unlimited number of binary devices using just three wires.

SPI Communications

The two main forms of serial communications are SPI and I2C. Both forms are similar, with SPI
originating with Motorola and becoming a defacto standard while I2C came from Phillips
Semiconductors.

SPI uses a 3 or 4 wire interface, is capable of full-duplex communications (you can send and receive data
at the same time), and capable of 40M bps1 communications (maybe more?). I2C uses only 2 wires, but
is limited to 400k bps. Both are supported by the Pi-Pico.

1 bps: bits per second

NDSU Binary I/O ECE 476

1 April 9, 2024

The four wires used in SPI communications (along with a common ground) are:

SCK: The clock line

MOSI: Master Out, Slave In (write bus)

MISO: Master In, Slave Out (read bus), and

CS: Chip Select

Note that the SCK, MOSI, and MISO lines can be shared by multiple devices: only the chip-select line
needs to be separate (so the SPI master can specify which SPI slave the message is for.) Furthermore, if
data only goes one way, the MISO line can be eliminated - leaving 3-wire communications. This allows
a large number of devices to be addressed using just a few wires on the Pi-Pico

SPI Master

SCK

MOSI
MISO

SS0

SS1

SS2

SCK
SDI
SDO

CS

SCK
SDI
SDO

CS

SCK
SDI
SDO

CS

SPI Slave

SPI Slave

SPI Slave

Pi-Pico

With SPI communications, SCK, MOSI, and MISO can be shared among your devices

Typically, an SPI message proceeds as follows:

Chip Select goes low to start a message

Bits are sent out on the MOSI line, one by one,

Bits are read on the MISO line, one by one, and

Each bit is synchronized by a clock line (sent by the master)

At the end of the message, Chip Select goes high

Chip Select

Data

CLK

b7 b6 b5 b4 b3 b2 b1 b0

Typical signals on an SPI bus with 8-bits of data

NDSU Binary I/O ECE 476

2 April 9, 2024

In theory, there's no limit to how many bits can be sent in one message. This allows you to read from and
write to a large number of binary I/O pins using just a few pins on the Pico.

Serial Input: 74HC594

Starting out, lets look at having a Pi-Pico read eight binary inputs just a 3-wire SPI interface (since this is
a read operation, the MOSI line isn't needed). If you search Digikey using the term shift register, you'll
get 2214 hits (as of April 1, 2024).

Narrow the search as

In-Stock

Active

8-bits

Through Hole

and you're down to 121 hits.

Narrow to Parallel to Serial (serial input) and you now have a manageable number of options. One that
looks promising is a 74LS165. Select this one and pull up the datasheets

NDSU Binary I/O ECE 476

3 April 9, 2024

Page #1 of the data sheets tell you

This device operated at up to 35MHz, and

It gives the wiring diagram,

Page #6 shows you the schematic of the device, along with a timing diagram on page #5.

Schematics for a 74LS165 Shift Register

NDSU Binary I/O ECE 476

4 April 9, 2024

This is enough to set up the hardware

CLK INH

SER IN
LOAD

QH G F E D C B A

GND Vcc

+3.3V

Pi-Pico

SDI1

SCK1

CS1
GP10

GP13

GP12
H

Binary Signals 0..7

CLK INH

SER IN
LOAD

QH G F E D C B A

GND Vcc

+3.3V

H

Binary Signals 8..15

74LS165 74LS165
GP9

Wiring for a 74LS165: Parallel to Series IC

In terms of software, the following diagram on page #5 basically tells you how to write the code to read
from this device.

LOAD

CLK

QH H G F E D C B A H2 G2

data is loaded into shift registers

Timing Diagram from Page 5 of data sheets

To read 16 binary inputs

Pull LOAD low then high

Pulse the clock high then low. The data on the QH line is valid on the falling edge of the clock.

Read in the first bit (H),

Pulse the clock high then low

Shift the data left and read the next bit (G)

repeat 16x to read 16 bits

NDSU Binary I/O ECE 476

5 April 9, 2024

Bit-Banging: This algorithm can be placed into a subroutine in Python

Each bit is held high or low for 100ms so that you can see the data being shifted in.

Since a LS165 can operate up to 35MHz, these wait times could be reduced to 1us without any
problems.

This is called bit banging: you manually set and clear bits one by one.

The net result is you can

Read 8 bits of data in 18us (if you change the sleep times to 1us)

Read 16 bits of data in 34us

All while using just two wires.

from machine import Pin

from time import sleep_ms, sleep_us

CLK = Pin(10, Pin.OUT)

DIN = Pin(11, Pin.IN, Pin.PULL_UP)

LATCH = Pin(9, Pin.OUT)

def HC165():

 LATCH.value(1)

 CLK.value(0)

 sleep_ms(100)

 LATCH.value(0)

 sleep_ms(100)

 LATCH.value(1)

 # data is latched - now shift it in

 X = 0

 for i in range(0,8):

 CLK.value(1)

 sleep_ms(100)

 X = (X << 1) + DIN.value()

 CLK.value(0)

 sleep_ms(100)

 print(i, X)

 return(X)

while(1):

 Y = HC165()

 print(Y)

Bit-banging has some advantages:

You have complete control of each signal

You can use any I/O pins for the SPI communications

There are alternatives, however.

SPI communications has become a defacto standard, so not surprisingly, there are Python routines to do
this for you as well as hardware on the Pi-Pico specifically designed for SPI communications.

NDSU Binary I/O ECE 476

6 April 9, 2024

To set up a SPI port in Python, the function SPI in machine is used:

from machine import Pin, SPI

spi = SPI(1,

baudrate=1000,polarity=0,phase=0,bits=8,sck=10,mosi=11,miso=12)

rxdata = spi.read(2, 0x42)

baud rate sets the speed of the SPI communications (up to 30MHz for the LS165)

bits tells you how many bits per message (8 or 16 for this example(

sck, mosi, miso are the pins used for the SPI communications interface.

spi.read(2, 0x1234) reads in two bytes while sending out 0x1234 on the MOSI line

(The MOSI line isn't used in this example - but could be used to drive a 74HC594 in the next section).

A full program which reads the SPI port using the SPI routine is as follows:

from machine import Pin

from time import sleep, sleep_ms, sleep_us

spi = SPI(1, baudrate=10_000_000, polarity=0, phase=0, bits=8,

sck=10, mosi=11, miso=12)

Button = Pin(20, Pin.IN, Pin.PULL_UP)

LATCH = Pin(13, Pin.OUT)

def LS165():

 LATCH.value(1)

 sleep_us(1)

 LATCH.value(0)

 sleep_us(1)

 LATCH.value(1)

 # data is latched - now shift it in

 rxdata = spi.read(2, 0x42)

 return(rxdata)

while(1):

 Y = LS165()

 print(Y)

 sleep(0.1)

At 10MHz, it will take only 3.6us to shift in 16 bits of data

2us to pulse the latch high then low

1.6us to shift in 16 bits of data

NDSU Binary I/O ECE 476

7 April 9, 2024

Serial Output: 74HC594

You can also do serial output with a Pi-Pico. To do so, first find a serial-in, parallel-out shift register. A
74HC594 is one such candidate.

74HC594 Serial-In, Parallel Out Shift Register

The corresponding timing diagram looks like this:

RCLK

SRCLK

SER H G F E D C B A

data is latched

Translating....

Start with RCLK = 0 and SRCLK = 1

Send the first bit to the SER line (MOSI) and pulse the clock low then high

Send the following bits to the SER line, pulsing the clock each time

When done, pulse RCLK high then low to latch the outputs of the shift register to the outputs

At that point, the output pins are ready.

In terms of hardware, two 74HC594's could be used to output 16 bits using just 3 pins on the Pi-Pico:

NDSU Binary I/O ECE 476

8 April 9, 2024

Pi-Pico

SDO1

SCK1

CS1
GP10

GP13

GP12

Binary Signals 0..7

SRCLK

RCLK

SER

Vcc RCLR SRCLRGND

+3.3V

Binary Signals 8..15

SRCLK

RCLK

SER

Vcc RCLR SRCLRGND

+3.3V

74HC494 74HC494

A B C D E F G H A B C D E F G H

GP9

Setting up 16 binary outputs using two 74HC594 series-in, parallel-out shift registgers.

Note:

There's no limit to how many shift registers you can cascade.

You could use 5V for the 74HC494 shift registers. They don't send any signals to the Pi-Pico, so
the 5V won't damage anything (serial inputs are high impedance)

The following code is one way to implement this using bit-banging:

from machine import Pin

from time import sleep_ms, sleep_us

CLK = Pin(10, Pin.OUT)

DOUT = Pin(11, Pin.OUT)

LATCH = Pin(13, Pin.OUT)

def HC594(X):

 LATCH.value(0)

 CLK.value(1)

 sleep_ms(1)

 for i in range(0,8):

 if(X & (0x80 >> i)):

 DOUT.value(1)

 else:

 DOUT.value(0)

 CLK.value(0)

 sleep_ms(1)

 CLK.value(1)

 sleep_ms(1)

 LATCH.value(1)

 DOUT.value(0)

 sleep_ms(1)

 LATCH.value(0)

x = 0

while(1):

 x = (x + 1) & 0xFF

 HC594(x)

 sleep_ms(100)

Using ticks_us(), the time it takes to execute the HC594() routine using bit-banging is 18,619us.

NDSU Binary I/O ECE 476

9 April 9, 2024

If you look at the CLK and DATA lines on an oscilloscope, you can see the data being sent out:

Oscilloscope showing the CLK line (yellow) and DATA line (blue).

If you connect LEDs to the output pins of the 74HC594, you can see the data lines as well:

LEDs connected to a 74HC594 showing which pins are 1 and 0
The data is HGFE DCBA = 1010 1001

Similarly, the same thing can be done using the built-in SPI functions in Python

NDSU Binary I/O ECE 476

10 April 9, 2024

from machine import Pin, SPI

from time import sleep_ms, sleep_us, ticks_us

spi = SPI(1, baudrate=10_000_000, polarity=0, phase=0, bits=8,

sck=10, mosi=11, miso=12)

LATCH = Pin(13, Pin.OUT)

def HC594(X):

 LATCH.value(0)

 Y = bytearray([X])

 spi.write(Y)

 LATCH.value(1)

 sleep_us(1)

 LATCH.value(0)

x = 0

while(1):

 x = (x + 1) & 0xFF

 t0 = ticks_us()

 HC594(x)

 t1 = ticks_us()

 print(t1 - t0)

 sleep_ms(10)

140

139

140

(note: code in blue is added to measure the execution time)

Note that using the built-in SPI funciton is much more efficient:

Bit-Banging SPI

18,619us 140us

The SPI port is a little trickier to figure out. It's worth it though - using the SPI port sends data to the
HC594 chip more than 100x faster then bit-banging.

Also note that this is why the Pi-Pico doesn't have Ports like other processors. The assumption is you're
going to be using serial I/O to drive your devices. As such, Ports don't really make sense as far as the I/O
pins on the Pico go. The actual ports will be the shift register inputs and outputs.

In addition, you can read the input ports at the same time you're writing to the output ports

SDI (MISO) reads the parallel-in, series out shift registers (74LS165)

SDO (MOSI) writes to the series-in, parallel out shift registers (74HC594)

All using the same clock line

NDSU Binary I/O ECE 476

11 April 9, 2024

PortA Port B Port C

Port D Port E Port F

CLK

SDI

CLK

SDI

CLK

SDI

CLK

SDO

CLK

SDO

CLK

SDO

SDO SDO

SDISDISDI1

SDO1

SCK1

74HC594 74HC594 74HC594

74LS165 74LS165 74LS165

Pi-Pico

A Pi-Pico can read and write to multiple shift registers at once - creating an almost unlimited number of I/O lines

Fun with Series Outputs: LED Cube

Finally, to illustrate how useful shift registers are, let's look at the design of an 8x8x8 LED cube

8x8x8 LED cube - kit available from Amazon for about $45

An 8x8x8 LED cube contains 256 LEDs, each able to be turned on and off from your microcontroller
(Arduino, PIC, Pi-Pico, etc.) Considering that a Pi-Pico only has 26 I/O pins, it's clear that you can use a
separate wire for each LED. Not to mention that connecting 256 LED would be a wiring nightmare.

To give an idea of how an 8x8x8 LED cube works, let's look at a smaller version: a 4x4x4 LED cube.

NDSU Binary I/O ECE 476

12 April 9, 2024

When you build a cube, you start with a 4x4 array of LEDs with

The anodes (+) connected together, going up and down

The cathodes (-) connected together going left to right (the floor), and

Level 1

Level 2

Level 3

Level 4

A(1,x) A(1,2) A(1,3) A(1,4)

Start: Create four 4x4 resistor arrays with the cathodes shorted together (creating levels)

and the anodes shorted together (top to bottom)

Once you have four of these,

place them side by side creating a 4x4x4 array of diodes.

Short the levels together (all diodes on Level 4 have their cathodes shorted, etc)

Note that soldering the cathodes together provides strength for the cube.

Only one wire connecting the slices is necessary (bend the wires sticking out to the right over so
they meet and can be soldered to the next slice.

Optionally, you can add a spacing wires connecting the cathodes at each LED if you like.
Electrically, it doesn't make a difference (one shorting wire is sufficient). Mechanically, the more
cross braces you include, the stronger your LED cube will be.

.

To power the LED cube, each anode is a separate output of a shift register. Connect these pins to the shift
register with a 200 Ohm resistor to set the current to (assuming the shift registers are powered with 5V)

I =

5V−3.0V

200Ω

 = 10mA

To tie the cathode to ground, use an NPN transistor

If all 16 LEDs are on at a given level, the net current on the cathode is 160mA - more than a shift
register can handle. A transistor amplifies this current.

NDSU Binary I/O ECE 476

13 April 9, 2024

 For a 4x4 array, this requires 20 outputs (three shift registers).

Level 1

Level 2

Level 3

Level 4

A(1,1) A(1,2) A(1,3) A(1,4)
200

200

200

200

200 200 200 200

Shift Register 1

0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15

16 17 18 19

Shift Register 2

Outputs

Connections for driving a 4x4x4 LED cube.

Three more slices would be used (not shown), each slice connected to the next four pins on Shift Register 1

The way the program works is

You first turn on Level 4 (SR2 = 0001)

- SR1 defines which LEDs are on and off on level 4
- Pause 2ms
You then turn on Level 3 (SR2 = 0010)

- SR1 defines which LEDs are on and off on level 3
- Pause 2ms
You then turn on Level 2 (SR2 = 0100)

- SR1 defines which LEDs are on and off on level 2
- Pause 2ms
You finally turn on Level 1 (SR2 = 1000)

- SR1 defines which LEDs are on and off on level 1
- Pause 2ms
and repeat

NDSU Binary I/O ECE 476

14 April 9, 2024

The net result is

Each LED has a 25% duty cycle when on (8 levels would be a 12.5% duty cycle)

The cycle time is 8ms (125Hz) for a 4x4x4 array, 62.5Hz for an 8x8x8 array

You can selectively turn on each LED independently

Summary:

If you're only driving a few items, there's nothing wrong with using parallel I/O with a Pi-Pico chip. If
you add some shift registers in your design, however, the number of I/O pins is almost unlimited.

NDSU Binary I/O ECE 476

15 April 9, 2024

