
8. Timing
Time-Related Functions & the Time Library

Period = 1 / frequency

On-Time Off-Time

Introduction:

In this lecture, we look things related to time. This includes measuring:

The time between events

The width of a pulse

The period of a square wave (and hence its frequency)

We'll also look at

How to generate a square wave of a given frequency,

With this, we'll be able to

Measure your reflex time,

Measure distance using an ultrasonic range sensor,

Measure resistance, capacitance, and temperature using a 555 timer, and

Play a tune with your Pi-Pico

Measuring Time

One of the more useful libraries is the time library. You can see the functions included by typing:

>>> import time
>>> dir(time)
['__class__', '__name__', '__dict__', 'gmtime', 'localtime',
'mktime', 'sleep', 'sleep_ms', 'sleep_us', 'ticks_add',
'ticks_cpu', 'ticks_diff', 'ticks_ms', 'ticks_us', 'time',
'time_ns']

To measure time, the funcitons we're going to use are:

ticks_ms time since power up in ms
ticks_us time since power up in us
ticks_cpu time since power up in cpu clocks (varies with uP)

recommended you don't use ticks_cpu

NDSU Timing ECE 476

JSG - 1 - April 2, 2024

For example, if you want to know how long the time.sleep(1) function takes, you could use the following

code:

from time import ticks_cpu, ticks_ms, ticks_us, sleep

x0 = ticks_us()
sleep(1)
x1 = ticks_us()
print(x1 - x0)

shell

1000064

According to this test, the sleep(1) took 1,000,064 us to execute (it's a little high due to the time it takes

to call the ticks_us() routine.) You could remove this time with

from time import ticks_cpu, ticks_ms, ticks_us, sleep

x0 = ticks_us()
sleep(1)
x1 = ticks_us()
x2 = ticks_us()
print(x1 - x0 - (x2-x1))

shell

1000004

Now, the one-second wait actually takes 1,000,004us or 1.000004 seconds.

If you chance this to ten seconds,

from time import ticks_cpu, ticks_ms, ticks_us, sleep

x0 = ticks_us()
sleep(10)
x1 = ticks_us()
x2 = ticks_us()
print(x1 - x0 - (x2-x1))

shell

10000006

the ten-second sleep routine actually takes 10.000006 seconds. (the sleep() function is really accurate!).

OK - so now that we can measure time, let's have some fun with it.

NDSU Timing ECE 476

JSG - 2 - April 2, 2024

Button Press Game: What's the shortest time I can press and release a button?

Wait until you press the button (value goes to zero). Record that time.

Then wait until you release the button (value goes to one). Record that time.

The difference in time is how long you held the button down.

Button (GP15)

Button Pressed Button Released

Duration

Button Press Game: Measure the time the button is held down.

Try to get the lowest score.

In Code:

from time import ticks_us, ticks_ms
from machine import Pin

Button = Pin(15, Pin.IN, Pin.PULL_UP)
while(1):
 while(Button.value() == 1):
 pass
 x0 = ticks_us()
 while(Button.value() == 0):
 pass
 x1 = ticks_us()
 print(x1-x0)

shell

51494
48585
57623
55358
60112
39496

In six attempts, the shortest time I was able to record was 39,496us. With a little more code, you could

keep track of the low score.

NDSU Timing ECE 476

JSG - 3 - April 2, 2024

Example 2: Reaction Time Game: For some more fun, determine my reflex time.

Start out by pressing a button.

3 seconds later, turn on the buzzer

As soon as the buzzer turns on, press the button

The time delay from hearing the buzzer and pressing the button is your reflex time.

Buzzer

Button

Button Pressed

3000ms delay

Reaction Time

Button Pressed

(start game)

Reaction Time Game: Measure the time between when the buzzer turns on and you press a button

In code:

from time import ticks_us, sleep_ms
from machine import Pin

Buzzer = Pin(13, Pin.OUT)
Button = Pin(15, Pin.IN, Pin.PULL_UP)
while(1):
 while(Button.value() == 1):
 pass
 while(Button.value() == 0):
 pass
 sleep_ms(3000)
 Buzzer.value(1)
 x0 = ticks_us()
 while(Button.value() == 1):
 pass
 x1 = ticks_us()
 Buzzer.value(0)
 print(x1 - x0)

shell

134063
160489
125309

Result: My reaction times were {134063us, 160489us, 125309us)

Comments:

It would be better if the time delay from hitting the button and the buzzer going off was random. It

would prevent you from anticipating the buzzer.

Once you can measure your reflex time, you can now start asking quesitons such as

- What frequency works best?

- Is a solid tone or a series of beeps better?

NDSU Timing ECE 476

JSG - 4 - April 2, 2024

- Do you respond to light faster than sound?

- What color of light are people most responsive to?

- Do your reflexes improve after exercise? After a caffinated drink?

- etc.

Generate a Fixed Frequency

There are several ways to generate a square wave on an output pin. Using the time.sleep() function

works, but it ties up the processor while waiting - and the frequency isn't very steady. A better way is to

use the PWM function from library machine.

For example, to set up GP18 to output a 100Hz square wave

off time = 5mson-time = 5ms

= 50%

100Hz Square Wave

To hear this as a sound, connect GP18 to a speaker

With a 330 Ohm resistor (to limit the current to 10mA), or

With an NPN transistor (to make a loud annoying sound)

Pi-Pico

Pi-Pico GP18

330

10mA 8 Ohm

8 Ohm

5V

330

7.9mA

550mA

GP18

Option 1 Option 2

2SC6144

NPN

Two ways to connect a speaker to your Pico board. A resistor is simple, add a transistor and it's louder.

The code would be:

1
2
3
4
5
6
7
8
9

from machine import Pin, PWM

Spkr = Pin(18, Pin.OUT)
Spkr = PWM(Pin(18))
Spkr = freq(100)
Spkr.duty_u16(32768)

while(1):
 pass

NDSU Timing ECE 476

JSG - 5 - April 2, 2024

The way this code works is as follows:

Line 3: Set pin #18 to be an output pin. This presumable drives a speaker, strobe light, etc.

Line 4: Set pin #18 to be a PWM signal (pulse-width modulation)

Line 5: Set the frequency to 100Hz

Line 6: Set the duty cycle to 50% (32768 / 65546)

note: The duty cycle is defined as the percent of time the square wave is high. The duty cycle is set by

duty_u16() as

- 0 0% duty cycle square wave (off)

- 32768 50% duty cycle square wave

- 65535 100% duty cycle square wave (on)

You could also use the duty_ns(5_000_000) to set the on-time to 5,000,000ns (5ms or 50%). Your pick.

Spkr = Pin(18, Pin.OUT)
Spkr = PWM(Pin(18))
Spkr = freq(100)
Spkr.duty_ns(5_000_000)

If you want the output to cycle on and off every 500ms, flip between 50% duty cycle and 0% duty cycle:

from machine import Pin, PWM
from time import sleep_ms

Spkr = Pin(18, Pin.OUT)
Spkr = PWM(Pin(18))
Spkr = freq(100)
Spkr.duty_u16(32768)

while(1):

 Spkr.duty_16(32768) # buzzer on
 sleep_ms(500)

 Spkr.duty_16(0) # buzzer off
 sleep_ms(500)

NDSU Timing ECE 476

JSG - 6 - April 2, 2024

3-Key Piano: Now that we can play a single note, play three different notes

When GP20 is 0 (button pressed), play 220Hz

When GP21 is 0, play 250Hz

When GP22 is 0, play 280Hz

Otherwise, remain silent

3-Key Piano
import time
from machine import Pin, PWM

Construct PWM object, with LED on Pin(25)
Spkr = PWM(Pin(18))
B0 = Pin(20, Pin.IN, Pin.PULL_UP)
B1 = Pin(21, Pin.IN, Pin.PULL_UP)
B2 = Pin(22, Pin.IN, Pin.PULL_UP)

while(1):
 if(B0.value() == 0):
 Spkr.freq(220)
 Spkr.duty_u16(32768)
 while(B0.value() == 0):
 pass
 if(B1.value() == 0):
 Spkr.freq(250)
 Spkr.duty_u16(32768)
 while(B1.value() == 0):
 pass
 if(B2.value() == 0):
 Spkr.freq(280)
 Spkr.duty_u16(32768)
 while(B2.value() == 0):
 pass
 pwm.duty_u16(0)

Note that with this code, while() loops are used

When a button is pressed (if-statement), the frequency and duty cycle are set.

The code then waits (while loop) until the button is released

This holds the frequency as long as the button is pressed.

As a side light - what happens if you hold down two buttons at the same time?

As written, the first button pressed wins. As long as that button is held down (value() == 0), you're stuck

in a while-loop and the other buttons are ignored.

There are other ways to write this program - but as is, only one note will be played at a time.

NDSU Timing ECE 476

JSG - 7 - April 2, 2024

Super Mario Brothers Theme: As a third example, play the first four bars of SuperMario Brothers:

4

4

To do this, create a subroutine which plays a given note for a fix duration:

Hz is the frequency of the note in Hz

Eighths sets the duration of the note in 1/8th notes

The last 50ms of each note is silent, allowing you to hear the same note played twice:

def Play(Hz, Eighths):
 if(Hz > 0):
 Spkr.freq(int(Hz))
 Spkr.duty_u16(32768)
 else:
 Spkr.duty_u16(0)
 time.sleep_ms(75 * Eights - 50)
 Spkr.duty_u16(0)
 time.sleep(0.05)

With this routine, you could play

100Hz for 4/8th beat, then

200Hz for 7/8th beat

Go silent for 4/8th beat

300Hz for 4/8 beat

with the following program:

Play(100, 4)
Play(200, 7)
Play(0, 4)
Play(300,4)
Play(0,4)

100Hz

4/8 beats

200Hz

7/8 beats

silent
4/8 beats

300Hz

4/8 beats
silent

4/8 beats

Output of the Play() subroutine

Placing the frequencies and durations into an array, you can go through the array to play a tune, such as

Super Mario Brothers:

NDSU Timing ECE 476

JSG - 8 - April 2, 2024

Super Mario Brothers (take 2)
Play the opening notes for Super Mario Brothers

from time import sleep_ms
from machine import Pin, PWM

Spkr = PWM(Pin(18))

def Init():
 Spkr.freq(100)
 Spkr.duty_u16(0)

def Play(Hz, Eighths):
 if(Hz > 0):
 Spkr.freq(int(Hz))
 Spkr.duty_u16(32768)
 else:
 Spkr.duty_u16(0)
 sleep_ms(75 * Eights - 50)
 Spkr.duty_u16(0)
 sleep_ms(50)

G3 = 195
A3 = 220
B3 = 233
C4 = 262
D4 = 277
E4 = 330
F4 = 349
G4 = 392
A4 = 440
B4 = 494

Notes = [E4, E4, E4, 0, C4, E4, G4, 0, G3, 0]
Dur = [2, 2, 4, 2, 2, 4, 4, 4, 4, 4]

def Play_Tune():
 for i in range(0, len(Notes)):
 Play(Notes[i], Dur[i])

Init()
while(1):
 Play_Tune()
 time.sleep(1)

NDSU Timing ECE 476

JSG - 9 - April 2, 2024

Measuring Pulse Width

A little more stylish way to measure a pulse width is to use the time_pulse_us() function in library

machine. The format for using this funciton is:

 Tp = time_pulse_us(17, 1, 100_000) # time of a positive pulse
 Tm = time_pulse_us(17, 0, 100_000) # time of a negative pulse

The first number (17) is the pin you're trying to measure.

The second number (1, 0) indicated whether you're measuring a positive pulse (1) or negative

pulse(0)

The third number is the max time in microseconds. If a pulse isn't detected withing this time it

kicks out rather than being stuck in an infinite loop.

negative pulse (0) positive pulse (1)

time_pulse_us() lets you measure the width of a negative or positive pulse

For example,

measure the pulse width of pin #17 (positive pulse default)

measuring positive pulse (pulse_level = 1) or negative pulse (pulse_level = 0)

time-out if longer than 5,000,000us

from machine import Pin, time_pulse_us

Button = Pin(17, Pin.IN, Pin.PULL_UP)
while(1):
 x = time_pulse_us(17, 0, 5_000_000)
 print(x)

shell

51494
48585
57623
55358
60112
39496

The results in the shell window give the negative pulse width (equal to the time the button was held

down) in micro-seconds. From the data, my shortest time was 39,496us.

NDSU Timing ECE 476

JSG - 10 - April 2, 2024

Ultrasonic Range Sensor:

With this funciton you can measure distance using an ultrasonic range sensor.

This device has four pins:

Vcc: input: +5V

Trig: input: Square wave from the RPi-Pico

Echo: output: Pulse to the RPi-Pico (note: you need to drop this down to 3.3V)

Gnd: input: 0V

Each time you sent from the range sensor. The time it takes for the sound to return is the duration of the

pulse on Echo. For example, if Trig is a 20Hz square wave, the signal on Echo might look like this:

The pulse width is a measure of distance to an object. Assuming the speed of sound is 343 m/s, each

microsecond of pulse width corresponds to a distance of

2d = (343m
s) ⋅ (1µs)

d = 171.5µm

(the 2 is due to the sound having to travel to and back from the object - so the effective distance the

sound travels is 2d)

NDSU Timing ECE 476

JSG - 11 - April 2, 2024

Vcc

Trig

Echo

gnd

+5V

3.3k

1.8k
GP17

GP19

Pi-Pico

Sound

Echo

Object

distance

5V 3.3V

Connections for an Ultrasonic Range Sensor.

Notes: The range senosr needs 5V to operate. The 5V echo needs to be reduced to 3.3V at the Pi-Pico

With the range sensor connected to pins 17 (trigger) and 19 (echo), the program would look like:

Range Sensor
from machine import Pin, PWM, time_pulse_us
from time import sleep_ms

TRIG = 17
ECHO = 19

def setup():
 global p_Trig, p_Echo
 p_Trig = Pin(TRIG, Pin.OUT)
 p_ECHO = Pin(ECHO, Pin.IN)
 p_Trig = PWM(Pin(TRIG))
 p_Trig.freq(50)
 p_Trig.duty_ns(1000)
 p_Echo = Pin(ECHO, Pin.IN, Pin.PULL_UP)

def distance():
 mm = time_pulse_us(ECHO, 11) * 0.1715
 return mm

def loop():
 dis = distance()
 print (dis, 'mm')
 sleep_ms(300)

Main Routine
setup()
while(1):
 loop()

NDSU Timing ECE 476

JSG - 12 - April 2, 2024

Measure Period (or frequency)

With time_pulse_us() you can measure the positive or negative pulse of a square wave. Add the two

together and you get the period.

negative pulse (0) positive pulse (1)

For example

Set up GP18 to be a 100Hz square wave with a positive pulse of 10ms (10,000 us)

Set up GP17 to be an input pin

Short pin 17 to pin 17

Measure the period of the signal on GP17

from machine import Pin, PWM, time_pulse_us
from time import ticks_cpu, ticks_ms, ticks_us

buzzer = Pin(18, Pin.OUT)
buzzer = PWM(Pin(18))
buzzer = freq(100)
buzzer.duty_ns(10000)

Button = Pin(17, Pin.IN, Pin.PULL_UP)
while(1):
 x = time_pulse_us(17, 1, 100_000)
 y = time_pulse_us(17, 0, 100_000)
 print('Period = ,x+y,' us')
 sleep_ms(100)

Result: Period = 9808 us

NDSU Timing ECE 476

JSG - 13 - April 2, 2024

Measure Resistance (LM555 Timer)

If you can measure frequency, you can measure resistance. The following 555 timer outputs a square

wave where

Ton = (R1 + R2) ⋅ C ⋅ ln(2)

Toff = R2 ⋅ C ⋅ ln(2)

If R1 and C are known, you can determine R2 by measuring the period (or the off-time)

5V

Vcc Reset

OutputDischarge

Threshold

Trigger

R1

R2

C

7

6

2

1

8 4

3

5V

V1

V2

V3 5V Square Wave

3.3V Square Wave

1.8k

3.3k

to RPi-Pico

Assume R1 = 10k, R2 = 100k, and C = 0.1uF. Then

Toff = 6931.47µs

R2 = 100kΩ ⋅ 
Toff

6931.47µs


 = 14.427 ⋅ Toff(µs)

Code:

from machine import Pin, PWM, time_pulse_us
from time import ticks_cpu, ticks_ms, ticks_us

T555 = Pin(17, Pin.IN, Pin.PULL_UP)
while(1):
 Toff = time_pulse_us(17, 0, 100_000)
 R2 = 14.427 * Toff
 print(R2)
 sleep_ms(100)

NDSU Timing ECE 476

JSG - 14 - April 2, 2024

Measure Temperature (555 Timer)

If you can measure resitance, you can measure tempeature. Replace R2 with a thermistor, such as

R = 1000 ⋅ exp 
3905

T+273
− 3905

298

Ω

and you can compute temperature in degees C (T) as a funciton of pulse width.

T =





3905

ln 
R

1000

 +

3905

298






 − 273

or

T =





3905

ln




14.427⋅Toff

1000



 +

3905

298








− 273

from machine import Pin, PWM, time_pulse_us
from time import ticks_cpu, ticks_ms, ticks_us
from math include log

T555 = Pin(17, Pin.IN, Pin.PULL_UP)
while(1):
 Toff = time_pulse_us(17, 0, 100_000)
 R2 = 14.427 * Toff
 T = 3905 / (log(R/1000) + (3905/298)) - 273
 print(T)
 sleep_ms(100)

This is termed theoretical calibration: given the reading, go backwards through the calculations to get

the temeprature.

NDSU Timing ECE 476

JSG - 15 - April 2, 2024

Vary Brightness of LED

Finally, by varying the duty cycle, you can vary the brightness of an LED. The following code makes the

LED on GP17 vary from 0% on to 100% on then back over and over again

10% 90% 10%

Brightness

GP17

10ms

100Hz

Fade LEDs on and off
from time import sleep_ms
from machine import Pin, PWM

LED = Pin(17, Pin.OUT)
LED = PWM(Pin(17))
LED.freq(100)

x = 0
dx = 100

while(1):
 x += dx
 LED.duty_u16(x)
 if(x > 65000):
 dx = -abs(dx)
 if(x <= 0)
 dx = abs(dx)
 sleep_ms(1)

Summary:

The Pi-Pico is really quite versitile. With it, you can

Output square waves at a given frequency and duty cycle

Measure time to one micro-second

Mesure the width of a pulse (positive or negative),

amoung other things. Add in a sensor, and you can measure distance, temperature, light, etc.

NDSU Timing ECE 476

JSG - 16 - April 2, 2024

NDSU Timing ECE 476

JSG - 17 - April 2, 2024

