
10. Motors with Binary Inputs

Introduction:
Stepper Motors

Servo-Motors (pulse-width)

BLDC motors (pulse-width)

Solenoids

Stepper Motors

Stepper motors are a common type of motor which interface well with microcontrollers. Stepper motors
are actually 2-phase AC synchronous motors - meaning that if you apply a 2-phase sine wave (sine &
cosine) to the inputs, you produce a rotating magnetic field, which causes the motor to spin smoothly.

rotating

magnetic

field

N

S

A C

Phase AC (sine)

Phase BD

(cosine)

B

D

Iac (sine) Ibd (cosine)

Stepper Motor

The reason they're called stepper motors is if you approximate a sine wave with a square wave, the motor
steps. The way you approximate a sine wave determines the number of steps per rotation - with three
common methods called

Full-Stepping (four steps per cycle),

Half-Stepping (eight steps per cycle), and

Micro-Stepping (more than eight steps per cycle)

The total number of steps per rotation varies with the stepper motor. The ones we have in lab have 200
steps per rotation (for full-stepping) - meaning they actually have 50 electromagnetics around their
perimeter. (50 sets of AC / BD coils around the circumference)

NDSU Motors with Binary Inputs ECE 476

JSG - 1 - April 13, 2024

Stepper Motors: Hardware

Since current can flow both ways in each phase (since waves are positive and negative), an H-bridge is
usually used to drive a stepper motor. A fairly inexpensive and pretty capable H-bridge is the L298N
from ebay and Amazon, which is capable of

5V to 35V operation

Up to 2A per phase

Max power = 25W

Dual H-Bridge Driver for a stepper motor.

Connections to your Pico board are:

GP16 (A)

GP18 (B)

GP17 (C)

GP19 (D)

Phase AC

Stepper

Motor

Phase BD

Stepper

Motor

+5V0V
5V .. 35V

Up to 2A note order of GP18 & GP17

L298N Dual H-Bridge

Four wires from the Pico needed to drive the stepper motor

NDSU Motors with Binary Inputs ECE 476

JSG - 2 - April 13, 2024

Software - Full Stepping

With full-stepping, you approximate a 2-phase sine wave with square waves. This makes it easy for a
Pico chip to drive the stepper motor. If {DCBA} is treated as a binary number the sequence to drive a
stepper motor is

0001 A

0010 B

0100 C

1000 D

repeat

Swap the order and you step backwards

Phase A/C

Phase B/D

A B C D A B C D

Full-Stepping approximates a 2-phase sine wave with four steps per cycle

In software, full-stepping can be implemented in code as follows:

Stepper Motor - Full Stepping

from time import sleep_ms

from machine import Pin

PA = Pin(16,Pin.OUT)

PB = Pin(17,Pin.OUT)

PC = Pin(18,Pin.OUT)

PD = Pin(19,Pin.OUT)

TABLE = [1, 2, 4, 8]

def Step(X):

 Y = TABLE[X % 4]

 PA.value(Y & 8)

 PB.value(Y & 4)

 PC.value(Y & 2)

 PD.value(Y & 1)

x = 0

for i in range(0,100):

 x += 1

 Step(x)

 sleep_ms(10)

NDSU Motors with Binary Inputs ECE 476

JSG - 3 - April 13, 2024

Software - Half-Stepping

A slight change in software produces eight divisions per cycle - meaning eight steps per cycle. This is
called half-stepping. If you treat the input as a 4-bit binary number {DCBA}, then the numbers written
the output pins are:

0001 A 1

0011 AB 3

0010 B 2

0110 BC 6

0100 C 4

1100 CD 12

1000 D 8

1001 DA 9

repeat

For a stepper motor rated at 200 steps per rotation, you actually get 400 steps per rotation using
half-stepping.

A AB B BC C CD D DA A
AB B BC C CD D DA

Phase A/C

Phase B/D

Approximation of sine / cosine wave using half stepping. Each cycle is broken down into eight steps.

Code for half-stepping is almost the same, except that you have eight entries in your lookup table.

NDSU Motors with Binary Inputs ECE 476

JSG - 4 - April 13, 2024

Stepper Motor - Half Stepping

from time import sleep_ms

from machine import Pin

PA = Pin(16,Pin.OUT)

PB = Pin(17,Pin.OUT)

PC = Pin(18,Pin.OUT)

PD = Pin(19,Pin.OUT)

TABLE = [1, 3, 2, 6, 4, 12, 8, 9]

def Step(X):

 Y = TABLE[X % 8]

 PA.value(Y & 8)

 PB.value(Y & 4)

 PC.value(Y & 2)

 PD.value(Y & 1)

x = 0

for i in range(0,200):

 x += 1

 Step(x)

 sleep_ms(10)

Software - Micro-Stepping: 16 steps per cycle

A third option is to use PWM to approximate a sine and cosine wave. This is termed micro-stepping.
The number of levels per cycle is arbitrary and can in theory be as fine as you want. For illustration
purposes, we'll look at micro-stepping with 16 and 32 steps per cycle.

With PWM outputs, you can output anything from 0% to 100% duty cycle. To get negative voltages, you
switch from phase A or B being energized (positive) to C or D being energized (negative):

Phase A/C

Phase B/D

A

C

A

C

A

100%

B

D

B

D

0%

100%
100%

0%

100%

PWM outputs allow you to generate any voltage from 0% to 100%

NDSU Motors with Binary Inputs ECE 476

JSG - 5 - April 13, 2024

To speed up the computations, a look-up table is used for phase A (which is zero for the 2nd half of the
sine wave). Phase B, C, and D can then be generated using the same look-up table and shifting where
you read by 90 degrees, 180 degrees, and 270 degrees respectively.

The following code uses a look-up table with 16 entries - resulting in 800 steps per rotation

N = 


200 steps / rotation

4 steps per cycle

 (16 entry table) = 800

steps

rotation

from machine import Pin, PWM

from time import sleep_ms

PA = Pin(16,Pin.OUT)

PA = PWM(Pin(16))

PA.freq(100)

PA.duty_u16(0)

PB = Pin(17,Pin.OUT)

PB = PWM(Pin(17))

PB.freq(100)

PB.duty_u16(0)

PC = Pin(18,Pin.OUT)

PC = PWM(Pin(18))

PC.freq(100)

PC.duty_u16(0)

PD = Pin(19,Pin.OUT)

PD = PWM(Pin(19))

PD.freq(100)

PD.duty_u16(0)

TABLE16 = [0, 24874, 45962, 60052, 65000, 60052, 45962, 24874, 0,

 0, 0, 0, 0, 0, 0, 0]

def Step16(X):

 A = TABLE16[X % 16]

 PA.duty_u16(A)

 B = TABLE16[(X+4) % 16]

 PB.duty_u16(B)

 C = TABLE16[(X+8) % 16]

 PC.duty_u16(C)

 D = TABLE16[(X+12) % 16]

 PD.duty_u16(D)

x = 0

for i in range(0,800):

 x += 1

 Step16(x)

 sleep_ms(5)

PA.duty_u16(0)

PB.duty_u16(0)

PC.duty_u16(0)

PD.duty_u16(0)

NDSU Motors with Binary Inputs ECE 476

JSG - 6 - April 13, 2024

Similarly, you could use a table with 32 entries, resulting 1600 steps per rotation:

Micro-Stepping; 32 steps per cycle
from machine import Pin, PWM

from time import sleep_ms

PA = Pin(16,Pin.OUT)

PA = PWM(Pin(16))

PA.freq(100)

PA.duty_u16(0)

PB = Pin(17,Pin.OUT)

PB = PWM(Pin(17))

PB.freq(100)

PB.duty_u16(0)

PC = Pin(18,Pin.OUT)

PC = PWM(Pin(18))

PC.freq(100)

PC.duty_u16(0)

PD = Pin(19,Pin.OUT)

PD = PWM(Pin(19))

PD.freq(100)

PD.duty_u16(0)

TABLE32 = [0, 12681, 24874, 36112, 45962, 54046, 60052, 63751,

65000, 63751, 60052, 54046, 45962, 36112, 24874, 12681, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

def Step32(X):

 A = TABLE32[X % 32]

 PA.duty_u16(A)

 B = TABLE32[(X+8) % 32]

 PB.duty_u16(B)

 C = TABLE32[(X+16) % 32]

 PC.duty_u16(C)

 D = TABLE32[(X+24) % 32]

 PD.duty_u16(D)

x = 0

for i in range(0,1600):

 x += 1

 Step32(x)

 sleep_ms(5)

PA.duty_u16(0)

PB.duty_u16(0)

PC.duty_u16(0)

PD.duty_u16(0)

NDSU Motors with Binary Inputs ECE 476

JSG - 7 - April 13, 2024

Solenoids

A solenoid is an electromagnet which can either pull or push a rod back and forth. Think of it as an
electronic deadbolt:

When de-energized, the deadbolt locks the door.

When energized, the deadbolt is pulled back, allowing the door to open.

Since this is an of/off device, a simple binary output from the Pico can be used.

Sample Solenoid: Applying 12V to the leads draws 1A and applies 60N of force

Assume for example a uxcell 12V solenoid is to be driven by a Pi-Pico. The requirements are:

V = 12V

I = 1A @ 12V

Since a Pi-Pico can't output 12V or 1A directly, add a transistor switch (assume a ZTX1051A NPN
transistor).

Digikey Part: ZTX1051A

Ic(max) = 4A

DC Current Gain (min): 300 @ 1A, 2V

Vce(sat) = 210mV @ 1000mA

$0.68 (qty 100)

To saturate the transistor, you need

h fe ⋅ Ib > Ic

300 ⋅ Ib > 1A

12mA > Ib > 3.33mA

(The 12mA is the maximum output from a Pi-Pico). Rb is then

Rb = 


3.3V−0.7V

Ib




217Ω < Rb < 780Ω

NDSU Motors with Binary Inputs ECE 476

JSG - 8 - April 13, 2024

Anything in this range should work. Let Rb = 330 Ohms. Note that solenoids are inductors - meaning
you need to add a flyback diode to save the transistor when the inductor turns off.

+12V

Solenoid 1A flyback

diode

Rb = 330

Ib

Zetex 1051A

NPN

GP19

Solenoid Code:

A simple 1/0 on the output turns the solenoid on and off

Turning a solenoid on and off
from machine import Pin

from time import sleep

GP19 = Pin(19,Pin.OUT)

while(1):

 print('Solenoid On')

 GP19.value(1)

 sleep(1)

 print('Solenoid Off')

 GP19.value(0)

 sleep(1)

NDSU Motors with Binary Inputs ECE 476

JSG - 9 - April 13, 2024

Brushless DC Motors (BLDC - Quad-Copter Motors)

BLDC Motor (quad-copter motor)

A second class of motors with digital inputs use a PWM signal to control them, such as a BLDC motor.
These motors use a 3-wire control input:

Red: +3.3V

Black: Ground

White: Control Signal

4V ..7V @ 30A

Ground

+5V

Red

Black

Red

Black

White

A

B

C

ESC Motor

Pi-Pico

GPx Control

gnd
0V

Connections from a Pi-Pico to a BLDC motor.

The control input is a square wave:

Frequency = 50Hz to 330Hz

Stop (power on): 0.9ms pulse

Slow: 1.2ms pulse

Fast: 3.0ms pulse

Fast

0 0.5 1 1.5 2 2.5 3 3.5
Pulse Width (ms)

Idle Slow

The speed of the BLDC motor is set by the pulse width on the Control line

On power up. the ESC module wants to see a 0.9ms pulse on the control line. This is for safety: the
blades of a quad-copter hurt when they hit you. If the ESC module sees the correct voltage and a 0.9ms

NDSU Motors with Binary Inputs ECE 476

JSG - 10 - April 13, 2024

pulse on the control line, it will then enter RUN mode, allowing you to vary the speed of the motor by
adjusting the pulse width on the Control line.

This is very easy to do with a Pi-Pico.

Sample Code

Set the frequency to 50Hz (period = 20ms)

Set the pulse width to 0.9ms until you press a button connected to GP15

Once you press the button, switch from slow (1.2ms pulse) to fast (3.0ms pulse)

from machine import Pin

from time import sleep

GP15 = push button

GP16 = control input to BLDC

Button = Pin(15, Pin.IN, Pin.PULL_UP)

Control = Pin(16, Pin.OUT)

Control = PWM(Pin(16))

Control.freq(50)

Control.duty_ns(900_000)

while(Button.value() == 1):

 pass

while(1):

 print('slow')

 Control.duty_ns(1_200_000)

 sleep(1)

 print('fast')

 Control.duty_ns(3_000_000)

 sleep(1)

NDSU Motors with Binary Inputs ECE 476

JSG - 11 - April 13, 2024

Digital Servo Motor

Typical Digital Servo Motor: Output is a 0 - 270 degree rotation

Another motor with a digital interface is a Digital Servo Motor. Think pan-and-tilt camera or a robotic
arm for this motor.

The output of a Digital Servo Motor is an angle: the link can be set to 0-90 degrees, 0-180, or 0-270
degrees typically. Like the previous example, this is a 3-wire interface:

Red: 5.0V to 6.8V, up to 3.0A (varies with the motor)

Black: Ground

White: Control Input

The control input sets the angle. For the motor given above, this is a square wave

Frequency = 50 - 330Hz

Pulse Width = 500 - 2500us

Neutral Position = 1500us

0 0.5 1 1.5 2 2.5 3 3.5
Pulse Width (ms)

0 degrees 270 degrees135 degrees

The pulse width sets the angle of the motor

NDSU Motors with Binary Inputs ECE 476

JSG - 12 - April 13, 2024

The hardware connection from a Pi-Pico to the motor is also similar to a BLDC motor:

5.0 .. 6.8V @ 3A

Ground

Red

Black

White

Pi-Pico

GPx Control

Digital

Servo

Motor

Connection from a Pi-Pico to a Digital Servo Motor.
The pulse width on the control line sets the angle.

The code is almost the same as before. As an example, the following rotates the arm

Button 15: Increase the angle

Button 14: Decrease the angle

GP16: Control input

from machine import Pin

from time import sleep_ms

GP14 = push button (decrease angle)

GP15 = push button (increae angle)

GP16 = control input to digital servo motor

Up = Pin(15, Pin.IN, Pin.PULL_UP)

Down = Pin(14. Pin.IN, Pin.PULL_UP)

Control = Pin(16, Pin.OUT)

Control = PWM(Pin(16))

Control.freq(50)

x = 1_500_000

while(1):

 if(Up.value() == 0):

 x += 1000

 if(Down.value() == 0):

 x -= 1000

 if(x < 500_000):

 x = 500_000

 if(x > 2_500_000):

 x = 2_500_000)

 Control.duty_ns(x)

 sleep_ms(1)

NDSU Motors with Binary Inputs ECE 476

JSG - 13 - April 13, 2024

Continuous Rotation Servo Motor

For speed control, a Continuous Rotation Servo Motor can be used

Finally, it you want continuous rotation, such as for driving the wheel of a car, a continuous rotation
servo motor can be used. This again has a three-wire interface. For the example given here:

Red = 4.8V - 6.0V

Current: 100mA (no load) .550mA (stall)

Pulse Width: 700 - 2300 us

No-Load Speed: 110 rpm

The pulse width sets the speed:

CW: 1500us - 700us

CCW: 1500us - 2300us

Stop: 1500us +/- 45us

0 0.5 1 1.5 2 2.5 3 3.5
Pulse Width (ms)

FastFast StopCW CCW

Wiring to a Pi-Pico is similar to before:

NDSU Motors with Binary Inputs ECE 476

JSG - 14 - April 13, 2024

4.8 .. 6.0V @ 550mA

Ground

Red

Black

White

Pi-Pico

GPx Control

Continuous

Servo

Motor

Wiring from a Pi-Pico to a Continuous Servo Motor

Similarly, the code is almost the same as for a angle-control motor:

Button 15: Increase the speed

Button 14: Decrease the speed

GP16: Control input

from machine import Pin

from time import sleep_ms

GP14 = push button (decrease angle)

GP15 = push button (increae angle)

GP16 = control input to continuous servo motor

Up = Pin(15, Pin.IN, Pin.PULL_UP)

Down = Pin(14. Pin.IN, Pin.PULL_UP)

Control = Pin(16, Pin.OUT)

Control = PWM(Pin(16))

Control.freq(50)

x = 1_500_000

while(1):

 if(Up.value() == 0):

 x += 1000

 if(Down.value() == 0):

 x -= 1000

 if(x < 700_000):

 x = 700_000

 if(x > 2_300_000):

 x = 2_300_000)

 Control.duty_ns(x)

 sleep_ms(1)

NDSU Motors with Binary Inputs ECE 476

JSG - 15 - April 13, 2024

Summary:

Digital motors are pretty easy to interface with a Pi-Pico:

With a stepper motor, you mimic a 2-phase sine wave with four wires from the Pi-Pico

With digital servo motors, you control the speed with a pulse width.

Note that these motors are low-power:

The stepper motor draws 3A @ 5V, meaning 15W

The digital servo motor draws 2A @ 5V, meaning 10W

The continuous servo motor draws 550mA @ 5V, meaning 2.7W

Subtract losses in the motors and the power these can deliver is fairly small. If that's all you need,
however, these are easy ways to interface motors to a Pi-Pico.

References

Pi-Pico and MicroPython

https://github.com/geeekpi/pico_breakboard_kit

https://micropython.org/download/RPI_PICO/

https://learn.pimoroni.com/article/getting-started-with-pico

https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

https://docs.micropython.org/en/latest/library/index.html

https://www.fredscave.com/02-about.html

Pi-Pico Breadboard Kit

https://wiki.52pi.com/index.php?title=EP-0172

Other

https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/

https://electrocredible.com/raspberry-pi-pico-external-interrupts-button-micropython/

https://peppe8o.com/adding-external-modules-to-micropython-with-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-esp32-esp8266-micropython/

NDSU Motors with Binary Inputs ECE 476

JSG - 16 - April 13, 2024

