Subroutines

ECE 476 Advanced Embedded Systems
Jake Glower - Lecture #4

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Introduction:
Subroutines are programs you can call from other programs.

These go by various names
 Functions in Matlab
« Subroutines in C
« Definitions in Python

They all serve the same purpose:

« Break your program into smaller routines which can be tested

- supports bottom-up and top-down programming
- Allow you to reuse code from program to program.

This lecture looks at
- How subroutines are defined in MicroPython and
« How to return parameters to the main routine.

Subroutines in MicroPython

Subroutines are defined by the keyword def
« short for define

The simplest example would be a routine which
« 1s passed nothing,
« returns nothing, and
« simply prints 'hello' when called:

When you press the run command
« Python installs the subroutine SayHello

« It then runs the main routine
- instruction following all of the definitions

0 T e B O
def SayHello():
print ('hello"')

Start of main routine
SayHello ()

shell

>>>
hello

In this example, note that
« The subroutine is called SayHello
« Nothing is passed
- Indicated by ()
 The definition is terminated with a colon

« The code within the subroutine 1s indented
- Required Python standard

Also note
« SayHello() can be called from the shell window

| e ol B O
def SayHello() :
print ('hello')

Start of main routine
SayHello ()

shell

>>>
hello

>>> SayHello ()
hello

Passing Parameters

You can pass parameters to subroutines.

Example: Display numbers from 1..N
« CountToN(N): Receives a number (N)
« N is used in a for-loop

The main routine passes the number 5
« Count from 1 to 5

0 T/ T O O

def CountToN(N) :
for 1 in range(1,N+1) :
print (1)

Start of main routine
CountToN (5)

shell

>>>
1

g W DN

Passing Multiple Parameters

7 T e G~ O

. def Multiply (A, B):
You can pass multiple parameters A

« Include them in the definition print (&, ' * ', B,

Start of main routine
Multiply (4, 6)

Example: Write a subroutine which
multiplies two numbers

« Multiply(A, B):

shell

>>>
4 * 6 = 24

. . >>> Multiply (8, 7)
You can also call this subroutine fromthe s * 7 = s6

shell window

Returning One Parameter
1 e [l & O

Example of Returning One Number

Subroutines in Python variables. Jef Multiply (A, B)

. C =A*B
That variable could be return (C)
- An array, # Start of main routine
« A matrix, or X = Multiply (4, 6)
’ print (X)
« A class object
Example: Return one parameter
« Indicated with return(C) shell
>>>
24

You can also call the subroutine from >>> C = Multiply (8, 7)

>>> print (C)

the shell window e

Returning Several Parameters
I e P B O

Example of Returning four Numbers

Several parameters can be returned e Do (B) &

 Pass them in an array SS - i i E
C2 = A * B
c3 =2 / B
return([CO, C1l, C2, C3])

When you receive the array
Start of main routine

« Each element can be pulled out X = Operate (4,6)

separately print (X)
shell

>>>
[10, -2, 24, 0.666667]

>>> C = Operate(8,7)
>>> print (C)
[15, 1, 56, 1.4142857]

Returning Several Parameters (cont'd)

You can also receive several
parameters separately

- as four separate variables

Or as an array
« and pull elements out separately

7 T e G~ O

Example of Returning Four Numbers
def Operate (A, B):

CO = A + B
Cl = A - B
C2 = A * B
C3 =A/ B
return (CO, Cl1, C2, C3)

Start of main routine
a, b, ¢, d = Operate (4, 6)
print (a, b, c, d)

shell

>>>
10, -2, 24, 0.666667

>>> a, b, ¢, d = Operate(8,7)
>>> print (a, b, c, d)
15, 1, 56, 1.4142857

>>> a = Operate(8,7)
>>> print (a)
(15, 1, 56, 1.4142857)

>>> print(a[2])
56

Fun with Subroutines: Resistors in Series & Parallel

As an example of where subroutines can be useful, let's write routines to add
resistors in series and parallel. Using those routines, write a third routine to

solve for Rab if R is changed from 300 Ohms

250

50 75 300 200 b

Combine resistors in series and parallel to find Rab:
« Same as before, Rab = 188.7588 Ohms

50

250

75

300 200

450

(o

0 o [T @ O

def Series (R1l, R2):
Rnet = R1 + R2
return (Rnet)

def Parallel (R1l, R2):
Rnet = 1 / (1/R1 + 1/R2)
return (Rnet)

Ra = Series (300,200)
Rb = Parallel (Ra, 450)
Rc = Series (Rb, 75)

Rd = Parallel (Rc, 250)
Rab = Series (Rd, 50)
print ('Rab = ', Rab)
Shell

>>>

Rab = 188.7588

Find Rab when the 300 Ohm resistor changes:

[Ve [Pl B (Do

def Series(R1l, R2):
Rnet = R1 + R2
return (Rnet)

250

a 50 75 300 200 b def Parallel (R1, R2):
AVAVAY e A VAVA Ve e AVAVAV e AVAVAVan) Rnet = 1 / (1/R1 + 1/R2)
R return (Rnet)

450

——————J\/\/\r————— def Circuit (R) :
Ra = Series (R,200)
Rb = Parallel (Ra, 450)
Rc Series (Rb, 75)
Rd = Parallel (Rc, 250)
Rab = Series (Rd, 50)
return (Rab)

for R in range (100,400,100) :
Rab = Circuit (R)
print ('R = ',R,' Rab = ', Rab)

Shell

>>>

= 100 Rab = 176.2376
200 Rab 183.5615
= 300 Rab = 188.7588

OV
I

Fun with Subroutines: Convolution and Rolling Dice:

In the previous lecture, we looked at convolution and how it applies to
rolling dice. Rather than having to write a convolution routine each time,
let's create a subroutine which convolves two vectors.

[Ve ol @) O

Starting out, let's write a routine similar to ©°F [*repace =0, &k, xi):

x = x0
Matlab's linspace(a,dx,b) which A= 1l
while(x <= x1):
« Creates a vector, A.append (x)
X += dx

- Starting at a,
. def display (A):
- Ending at b, n = len(A)
. . . for k in range(0,n) :
With step size dx print (k, A[k])

k = linspace(0,1,5)

display (k)
shell
>>>
0 0.000
1 1.000
2 2.000
3 3.000
4 4.000
5 5.000

Now that this works, write a routine which
« Generates a uniform distribution
« Over the interval [a, b]:

[Ve ol @) O

def uniform(a,b):

A = []

N = b-a+l

for i in range(0,a):
A.append (0)

for i in range(a,b+l):
A.append (1/N)

return (A)

print ('4-sided die')
d4 = uniform(1l, 4)
display (d4)

shell
>>>

d-sided die

0

W N

0.

O O O O

000
.250
.250
.250
.250

L Ve [l @ (Do
Now that this works, adda ~ ¢9¢f conv(®, B):

i i nA = len(A)
COIlVOlU.thIl routine nB = len(B)
nC =nA + nB -1

for n in range(0,nC) :
C.append(0)
p(d4+d6=7)=0.167 for k in range (0, nA):
if (((n-k)>=0)& ((n-k)<nB) & (k<nA)) :
C[n] += A[k]*B[n-k]
return (C)

d4 = uniform(1l, 4)
de = uniform(1l, 6)
d4dde = conv (d4,do)
print ('d4d + de6')
display (d4db6)

shell

.000
.000
.042
.083
.125
.167
.167
.167
.125
.083
.042

O WO JoU WD O
oNoNeoNeo NoNolololNoNeNe)

}_\

Ice Storm: 2d8 + 4d6

With these routines, determine

« The pdf for the D&D spell Ice Storm

- 2d8 + 4d6
 The probability of doing 24 damage

There 1s an 8.06% chance of doing 24
damage

7 P - O~ O=

def linspace (x0, dx, x1):
def display (A):

def uniform(a,b):

def conv (A, B):

de = uniform(1l, 6)

d8 = uniform(1l, 8)

dox2 = conv (d6,do)

d6x4 = conv (dox2, do6x2)
d8x2 = conv (d8,d8)
IceStorm = conv (dox4,d8x2)
print ('p(24) = ', IceStorm[24])
shell

>>>

p(24) = 0.0806

Note: With this routine, you can also multiply polynomials

/

| e e B O

Cl(X) =2+3X+X2 def.linspace(xo, dx, x1):

b(x) =7 +6x 4+ 5x% +4x3 del dusplay (2) ¢
y = a(x) - b(x) def uniform(a,b) :
Y = [2,3, 1] * >k[7,6,5,4] def.conv(A, B):
A= 12,3,1]
B = [71 6/ 5/ 4]
C = conv (A, B)
display (C)
shell
— 2 3 4 5 >>>
y(x) =21 4+32x+34x" +28x° + 13x" +4x 0 21 000
1 32.000
2 34.000
3 28.000
4 13.000
5 4.000

Summary
Subroutines can be written in Python
 Similar to Matlab and C

You can pass parameters
« Similar to Matlab and C

You can return zer O, One, or more parameters
« Similar to Matlab and C
- With a slightly different (and simpler) syntax

Subroutines are useful
« They allow you to create functions
« Which can be used over and over again
« Saving time in writing and debugging

References
Pi-Pico and MicroPython

* https://github.com/geeekpi/pico_breakboard_kit
https://micropython.org/download/RPI_PICO/
https://learn.pimoroni.com/article/getting-started-with-pico

https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

https://docs.micropython.org/en/latest/library/index.html
* https://www.fredscave.com/02-about.html

Pi-Pico Breadboard Kit
* https://wiki.52pi.com/index.php?title=EP-0172

Other
* https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/
* https://electrocredible.com/raspberry-pi-pico-external-interrupts-button-micropython/
* https://peppe8o.com/adding-external-modules-to-micropython-with-raspberry-pi-pico/
* https://randomnerdtutorials.com/projects-raspberry-pi-pico/
* https://randomnerdtutorials.com/projects-esp32-esp8266-micropython/

