
Subroutines

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #4

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction:

Subroutines are programs you can call from other programs.

These go by various names

Functions in Matlab

Subroutines in C

Definitions in Python

They all serve the same purpose:

Break your program into smaller routines which can be tested

- supports bottom-up and top-down programming

Allow you to reuse code from program to program.

This lecture looks at

How subroutines are defined in MicroPython and

How to return parameters to the main routine.

Subroutines in MicroPython
Open Save Run Stop

Subroutines are defined by the keyword def

short for define

The simplest example would be a routine which

is passed nothing,

returns nothing, and

simply prints 'hello' when called:

When you press the run command

Python installs the subroutine SayHello

It then runs the main routine

- instruction following all of the definitions

def SayHello():

 print('hello')

Start of main routine

SayHello()

shell

>>>

hello

Open Save Run Stop

In this example, note that

The subroutine is called SayHello

Nothing is passed

- Indicated by ()

The definition is terminated with a colon

The code within the subroutine is indented

- Required Python standard

Also note

SayHello() can be called from the shell window

def SayHello():

 print('hello')

Start of main routine

SayHello()

shell

>>>

hello

>>> SayHello()

hello

Passing Parameters
Open Save Run Stop

You can pass parameters to subroutines.

Example: Display numbers from 1..N

CountToN(N): Receives a number (N)

N is used in a for-loop

The main routine passes the number 5

Count from 1 to 5

def CountToN(N):

 for i in range(1,N+1):

 print(i)

Start of main routine

CountToN(5)

shell

>>>

1

2

3

4

5

Passing Multiple Parameters
Open Save Run Stop

You can pass multiple parameters

Include them in the definition

Example: Write a subroutine which

multiplies two numbers

Multiply(A, B):

You can also call this subroutine from the

shell window

def Multiply(A, B):

 C = A * B

 print(A, ' * ', B, ' = ',C)

Start of main routine

Multiply(4,6)

shell

>>>

4 * 6 = 24

>>> Multiply(8,7)

8 * 7 = 56

Returning One Parameter
Open Save Run Stop

Subroutines in Python variables.

That variable could be

An array,

A matrix, or

A class object

Example: Return one parameter

Indicated with return(C)

You can also call the subroutine from

the shell window

Example of Returning One Number

def Multiply(A, B):

 C = A * B

 return(C)

Start of main routine

X = Multiply(4,6)

print(X)

shell

>>>

24

>>> C = Multiply(8,7)

>>> print(C)

56

Returning Several Parameters
Open Save Run Stop

Several parameters can be returned

Pass them in an array

When you receive the array

Each element can be pulled out

separately

Example of Returning four Numbers

def Operate(A, B):

 C0 = A + B

 C1 = A - B

 C2 = A * B

 C3 = A / B

 return([C0, C1, C2, C3])

Start of main routine

X = Operate(4,6)

print(X)

shell

>>>

[10, -2, 24, 0.666667]

>>> C = Operate(8,7)

>>> print(C)

[15, 1, 56, 1.4142857]

Returning Several Parameters (cont'd)
Open Save Run Stop

You can also receive several

parameters separately

as four separate variables

or as an array

and pull elements out separately

Example of Returning Four Numbers

def Operate(A, B):

 C0 = A + B

 C1 = A - B

 C2 = A * B

 C3 = A / B

 return(C0, C1, C2, C3)

Start of main routine

a, b, c, d = Operate(4,6)

print(a, b, c, d)

shell

>>>

10, -2, 24, 0.666667

>>> a, b, c, d = Operate(8,7)

>>> print(a, b, c, d)

15, 1, 56, 1.4142857

>>> a = Operate(8,7)

>>> print(a)

(15, 1, 56, 1.4142857)

>>> print(a[2])

56

Fun with Subroutines: Resistors in Series & Parallel

As an example of where subroutines can be useful, let's write routines to add

resistors in series and parallel. Using those routines, write a third routine to

solve for Rab if R is changed from 300 Ohms

a b
50

250

75

450

300 200

R

Combine resistors in series and parallel to find Rab:

Same as before, Rab = 188.7588 Ohms

Open Save Run Stop

a b
50

250

75

450

300 200

def Series(R1, R2):

 Rnet = R1 + R2

 return(Rnet)

def Parallel(R1, R2):

 Rnet = 1 / (1/R1 + 1/R2)

 return(Rnet)

Ra = Series(300,200)

Rb = Parallel(Ra, 450)

Rc = Series(Rb, 75)

Rd = Parallel(Rc, 250)

Rab = Series(Rd, 50)

print('Rab = ',Rab)

Shell

>>>

Rab = 188.7588

Find Rab when the 300 Ohm resistor changes:

Open Save Run Stop

a b
50

250

75

450

300 200

R

def Series(R1, R2):

 Rnet = R1 + R2

 return(Rnet)

def Parallel(R1, R2):

 Rnet = 1 / (1/R1 + 1/R2)

 return(Rnet)

def Circuit(R):

 Ra = Series(R,200)

 Rb = Parallel(Ra, 450)

 Rc = Series(Rb, 75)

 Rd = Parallel(Rc, 250)

 Rab = Series(Rd, 50)

 return(Rab)

for R in range(100,400,100):

 Rab = Circuit(R)

 print('R = ',R,' Rab = ', Rab)

Shell

>>>

R = 100 Rab = 176.2376

R = 200 Rab = 183.5615

R = 300 Rab = 188.7588

Fun with Subroutines: Convolution and Rolling Dice:

In the previous lecture, we looked at convolution and how it applies to

rolling dice. Rather than having to write a convolution routine each time,

let's create a subroutine which convolves two vectors.

Open Save Run Stop

Starting out, let's write a routine similar to

Matlab's linspace(a,dx,b) which

Creates a vector,

Starting at a,

Ending at b,

With step size dx

def linspace(x0, dx, x1):

 x = x0

 A = []

 while(x <= x1):

 A.append(x)

 x += dx

def display(A):

 n = len(A)

 for k in range(0,n):

 print(k, A[k])

k = linspace(0,1,5)

display(k)

shell

>>>

 0 0.000

 1 1.000

 2 2.000

 3 3.000

 4 4.000

 5 5.000

Open Save Run Stop

Now that this works, write a routine which

Generates a uniform distribution

Over the interval [a, b]:

def uniform(a,b):

 A = []

 N = b-a+1

 for i in range(0,a):

 A.append(0)

 for i in range(a,b+1):

 A.append(1/N)

 return(A)

print('4-sided die')

d4 = uniform(1,4)

display(d4)

shell

>>>

4-sided die

 0 0.000

 1 0.250

 2 0.250

 3 0.250

 4 0.250

Open Save Run Stop

Now that this works, add a

convolution routine

p(d4+d6 = 7) = 0.167

def conv(A, B):

 nA = len(A)

 nB = len(B)

 nC = nA + nB - 1

 for n in range(0,nC):

 C.append(0)

 for k in range(0,nA):

 if(((n-k)>=0)&((n-k)<nB)&(k<nA)):

 C[n] += A[k]*B[n-k]

 return(C)

d4 = uniform(1,4)

d6 = uniform(1,6)

d4d6 = conv(d4,d6)

print('d4 + d6')

display(d4d6)

shell

 0 0.000

 1 0.000

 2 0.042

 3 0.083

 4 0.125

 5 0.167

 6 0.167

 7 0.167
 8 0.125

 9 0.083

 10 0.042

Ice Storm: 2d8 + 4d6
Open Save Run Stop

With these routines, determine

The pdf for the D&D spell Ice Storm

- 2d8 + 4d6

The probability of doing 24 damage

There is an 8.06% chance of doing 24

damage

def linspace(x0, dx, x1):

 :

def display(A):

 :

def uniform(a,b):

 :

def conv(A, B):

 :

d6 = uniform(1,6)

d8 = uniform(1,8)

d6x2 = conv(d6,d6)

d6x4 = conv(d6x2, d6x2)

d8x2 = conv(d8,d8)

IceStorm = conv(d6x4,d8x2)

print('p(24) = ', IceStorm[24])

shell

>>>

p(24) = 0.0806

Note: With this routine, you can also multiply polynomials

Open Save Run Stop

a(x) = 2 + 3x + x2

b(x) = 7 + 6x + 5x2 + 4x3

y = a(x) ⋅ b(x)

Y = [2, 3, 1] ∗ ∗[7, 6, 5, 4]

def linspace(x0, dx, x1):

 :

def display(A):

 :

def uniform(a,b):

 :

def conv(A, B):

 :

A = [2,3,1]

B = [7,6,5,4]

C = conv(A,B)

display(C)

shell

y(x) = 21 + 32x + 34x2 + 28x3 + 13x4 + 4x5 >>>

 0 21.000

 1 32.000

 2 34.000

 3 28.000

 4 13.000

 5 4.000

Summary

Subroutines can be written in Python

Similar to Matlab and C

You can pass parameters

Similar to Matlab and C

You can return zero, one, or more parameters

Similar to Matlab and C

With a slightly different (and simpler) syntax

Subroutines are useful

They allow you to create functions

Which can be used over and over again

Saving time in writing and debugging

References
Pi-Pico and MicroPython

https://github.com/geeekpi/pico_breakboard_kit

https://micropython.org/download/RPI_PICO/

https://learn.pimoroni.com/article/getting-started-with-pico

https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

https://docs.micropython.org/en/latest/library/index.html

https://www.fredscave.com/02-about.html

Pi-Pico Breadboard Kit

https://wiki.52pi.com/index.php?title=EP-0172

Other

https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/

https://electrocredible.com/raspberry-pi-pico-external-interrupts-button-micropython/

https://peppe8o.com/adding-external-modules-to-micropython-with-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-esp32-esp8266-micropython/

