
SPI Serial I/O

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #7

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction:

So far, we've used parallel I/O

Each pin controls one LED

Each pin reads one button

Problem:

This uses up a lot of I/O pins

Some pins have other funcitons

GP0/1: Serial port (UART0)

GP2..11: LCD graphic display

GP13..17: Buzzer, LEDs, buttons

GP26..28: Analog inputs

There just aren't a lot of unused pins

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0

GP1

GND

GP2

GP3

GP4

GP5

GND

GP6

GP7

GP8

GP9

GND

GP10

GP11

GP12

GP13

GND

GP14

GP15 GP16

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28

GND

GP27

GP26

RUN

GP22

GND

GP21

GP20

GP19

GP18

GND

GP17

TFT.SCK

TFT.MOSI

TFT.MISO

TFT.CS

TFT.DC

TFT.RST

TFT.RST

TFT.INT

TFT.SDA

TFT.SCL

RGB LED

Buzzer

LED1

LED2Button1

Button2

ADC0(X)

ADC1(Y)

ADC2

ADC_VREF

USB

Serial vs. Parallel

Fortunately, there is a way to get more I/O pins

Use serial I/O rather than parallel

Parallel I/O:

(previous lectures)

Each GPIO pin drives one device

Communications takes one clock

Serial I/O:

(this lecture)

Each GPIO pin drives many devices

Communications takes several clocks

Shift

Register

Pi-Pico

Pi-Pico

Device 1

Device 2

Device 3

Device 4

Device 1

Device 2

Device 3

Device 4

Parallel I/O

Serial I/O

SPI & I2C Serial Communications

The two main forms of serial communications are SPI and I2C.

Both forms are similar

SPI came from Motorola

I2C came from Phillips Semiconductors.

SPI:

3 or 4 wire interface

Capable of full-duplex communications

Capable of 40+ Mbps communications

Supported by the Pi-Pico

I2C

2 wire interface

Limited to 400k bps

Supported by the Pi-Pico

SCL

SDASDA

SCL

CS

CLK

TX

RX

CS

CLK

DIN

DOUT

Pi-Pico

Pi-Pico

Device

Device

SPI Interface

I2C Interface

SPI Ports on a Pi-Pico

The Pico has two SPI ports

SPI0

SPI1

Each SPI port has four pins

TX (MOSI)

RX (MISO)

CS

SCK

These can be assigned to several

pins

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

SPI0 RX/GP0

SPI0 CS/GP1

GND

SPI0 SCK/GP2

SPI0 TX/GP3

SPI0 RX/GP4

SPI0 CS/GP5

GND

SPI0 SCK/GP6

SPI0 TX/GP7

SPI1 RX/GP8

SPI1 CS/GP9

GND

SPI1 SCK/GP10

SPI1 TX/GP11

SPI1 RX/GP12

SPI1 CS/GP13

GND

SPI1 SCK/GP14

SPI1 TX/GP15 GP16/SPI0 RX

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28

GND

GP27

GP26

RUN

GP22

GND

GP21

GP20

GP19/SPI0 TX

GP18/SPI0 SCK

GND

GP17/SPI0 CS

USB

SPI Communications

Four signals (plus common ground):

SCK: The clock line

TX (MOSI): Master Out, Slave In (write bus)

RX (MISO): Master In, Slave Out (read bus), and

CS: Chip Select

SCK, TX, and RX can be shared

CS needs to be different for each device

DOUT

DIN

CLK

DOUT

DIN

CLK

DOUT

DIN

CLK

CS

CS

CS

CS0

CS1

CS2

CLK

TX

RX

Master

Slave 2

Slave 1

Slave 0

SPI Data Format

Typically, an SPI message proceeds as follows:

Chip Select goes low to start a message

Bits are sent out on the MOSI line, one by one,

Bits are read on the MISO line, one by one, and

Each bit is synchronized by a clock line (sent by the master)

At the end of the message, Chip Select goes high

Chip Select

Data

CLK

b7 b6 b5 b4 b3 b2 b1 b0

Typical signals on an SPI bus with 8-bits of data

Serial Input: 74HC165

Starting out, lets look at having a Pi-Pico read eight binary inputs just a

3-wire SPI interface (since this is a read operation, the MOSI line isn't

needed). If you search Digikey using the term shift register, you'll get 2214

hits (as of April 1, 2024).

Narrow the search as

In-Stock

Active

8-bits

Through Hole

and you're down to 121 hits.

Narrow to Parallel to Serial (serial input) and you now have a manageable

number of options. One that looks promising is a 74HC165. Select this one

and pull up the datasheets

Page #14 of the data sheets tell you

This device operated at up to 35MHz, and

It gives the wiring diagram,

Data sheets shows you the schematic of the device, along with a timing

diagram.

Schematics for a 74HC165 Shift Register

This is enough to set up the hardware

Each 74HC165 adds eight binary inputs

You can cascade these to get more binary inputs

Using just three GPIO pins on the Pi-Pico

H G F E D C B A H G F E D C B A

SER IN

SER IN

QH

LOAD

CLK
INH GND Vcc

3.3V

INH GND Vcc

3.3V

RX

CS

SCK

GP12

GP9

GP10

Pi-Pico

74HC165 74HC165

QH

LOAD

CLK

Binary Signals 0..7 Binary Signals 8..15

Wiring for a 74HC165: Parallel to Series IC

To read 8 binary inputs

Pull LOAD low then high

Pulse the clock low.

Read in the first bit (H),

Pulse the clock high. This shifts the data in the shift register

repeat 8x for reading 8 bits, 16x to read 16 bits

Load

CLK

QH

shift on the rising edgeread on the falling edge
load data

H G F E D C B A

Bit-Banging:

Set/clear each bit manually

Hold for 10ms

Time can be dropped to 1us

Net result (time changed to 1us)

Read 8 bits of data in 18us

Read 16 bits of data in 34us

All while using just two wires.

from machine import Pin

from time import sleep_ms, sleep_us

CLK = Pin(10, Pin.OUT)

DIN = Pin(11, Pin.IN, Pin.PULL_UP)

LATCH = Pin(9, Pin.OUT)

def HC165():

 LATCH.value(1)

 CLK.value(1)

 sleep_ms(10)

 LATCH.value(0)

 sleep_ms(10)

 LATCH.value(1)

 # data is latched - now shift it in

 X = 0

 for i in range(0,8):

 CLK.value(0)

 sleep_ms(100)

 X = (X << 1) + DIN.value()

 CLK.value(1)

 sleep_ms(100)

 print(i, X)

 return(X)

while(1):

 Y = HC165()

 print(Y)

Oscilloscope Results
Oscilloscopes are your friend

They let you see what's really happening

Data (blue) is shifted on the rising edge of CLK (yellow)

Data should be read on the falling edge of CLK

Bit-Banging vs. Hardware

Bit-banging has some advantages:

You have complete control of each signal

You can use any I/O pins for the SPI communications

There are alternatives, however.

SPI communications has become a defacto standard

Python supports SPI communications

Pi-Pico supports SPI communications

(I2C as well...)

Using these features simplifies and speeds up the code

SPI Port via Hardware

To set up a SPI port in Python, the function SPI in machine is used:

from machine import Pin, SPI

spi = SPI(1, baudrate=1000,polarity=0,phase=0,bits=8,sck=10,mosi=11,miso=12)

rxdata = spi.read(2, 0x42)

baud rate sets the speed of the SPI communications (up to 30MHz for the

LS165)

bits tells you how many bits per message (8 or 16 for this example(

sck, mosi, miso are the pins used for the SPI communications interface.

spi.read(2, 0x42) reads in two bytes while sending out 0x42 on the MOSI line

(The MOSI line isn't used in this example - but could be used to drive a

74HC594 in the next section).

Using the hardware SPI port

Data sent at 10MHz

Takes 3.6us to send 16 bits

Plus 2us to latch high then

low

SPI is faster and easier if you

use the built-in SPI features

from machine import Pin

from time import sleep, sleep_ms, sleep_us

spi = SPI(1, baudrate=10_000_000, polarity=0,

phase=0, bits=8, sck=10, mosi=11, miso=12)

Button = Pin(20, Pin.IN, Pin.PULL_UP)

LATCH = Pin(13, Pin.OUT)

def LS165():

 LATCH.value(1)

 sleep_us(1)

 LATCH.value(0)

 sleep_us(1)

 LATCH.value(1)

 # data is latched - now shift it in

 rxdata = spi.read(2, 0x42)

 return(rxdata)

while(1):

 Y = LS165()

 print(Y)

 sleep(0.1)

Serial Output: 74HC594

You can also do serial output with a Pi-Pico. To do so, first find a serial-in,

parallel-out shift register. A 74HC594 is one such candidate.

74HC594 Serial-In, Parallel Out Shift Register

The corresponding timing diagram looks like this:

RCLK

SRCLK

SER H G F E D C B A

data is latched

Translating....

Start with RCLK = 0 and SRCLK = 1

Send the first bit to the SER line (MOSI) and pulse the clock low then high

Send the following bits to the SER line, pulsing the clock each time

When done, pulse RCLK high then low to latch the outputs of the shift register

to the outputs

At that point, the output pins are ready.

In terms of hardware, two 74HC594's could be used to output 16 bits using

just 3 pins on the Pi-Pico:

HGFEDCBA HGFEDCBA

SER

RCLK

SRCLK

3.3V

TX

CS

SCK

GP11

GP9

GP10

Pi-Pico

74HC494

Binary Signals 0..7 Binary Signals 8..15

3.3V 3.3V

GND Vcc RCLR SRCLR

SER

RCLK

SRCLK

3.3V

74HC494

3.3V 3.3V

GND Vcc RCLR SRCLR

Setting up 16 binary outputs using two 74HC594 series-in, parallel-out shift registgers.

Note:

There's no limit to how many shift registers you can cascade.

You could use 5V for the 74HC494 shift registers.

- The 74HC494 doesn't send any signals to the Pi-Pico

74HC594 using Bit-Banging

CLK is held high & low for 1ms

Can be dropped to 1us

8 bits are sent out in 18.6ms

change sleep times to 1us

from machine import Pin

from time import sleep_ms, sleep_us

CLK = Pin(10, Pin.OUT)

DOUT = Pin(11, Pin.OUT)

LATCH = Pin(13, Pin.OUT)

def HC594(X):

 LATCH.value(0)

 CLK.value(1)

 sleep_ms(1)

 for i in range(0,8):

 if(X & (0x80 >> i)):

 DOUT.value(1)

 else:

 DOUT.value(0)

 CLK.value(0)

 sleep_ms(1)

 CLK.value(1)

 sleep_ms(1)

 LATCH.value(1)

 DOUT.value(0)

 sleep_ms(1)

 LATCH.value(0)

x = 0

while(1):

 x = (x + 1) & 0xFF

 HC594(x)

 sleep_ms(100)

If you look at the CLK and DATA lines on an oscilloscope, you can see the

data being sent out:

Oscilloscope showing the CLK line (yellow) and DATA line (blue).

If you connect LEDs to the output pins of the 74HC594, you can see the

data lines as well:

LEDs connected to a 74HC594 showing which pins are 1 and 0

The data is HGFE DCBA = 1010 1001

Repeat using SPI Hardware

140us transfer time

vs. 18ms with bit-banging

code in blue added to

measure execution time

not needed

from machine import Pin, SPI

from time import sleep_ms, sleep_us, ticks_us

spi = SPI(1, baudrate=10_000_000, polarity=0,

phase=0, bits=8, sck=10, mosi=11, miso=12)

LATCH = Pin(13, Pin.OUT)

def HC594(X):

 LATCH.value(0)

 Y = bytearray([X])

 spi.write(Y)

 LATCH.value(1)

 sleep_us(1)

 LATCH.value(0)

x = 0

while(1):

 x = (x + 1) & 0xFF

 t0 = ticks_us()

 HC594(x)

 t1 = ticks_us()

 print(t1 - t0)

 sleep_ms(10)

140

139

140

Why No Ports?

With serial I/O, you don't need (or want) ports

With the SPI interface and cascading IC's

You can read multiple ports (74HC165) and

You can write to multiple ports (74HC594)

All using just five pins

PortA Port B Port C

Port D Port E Port F

CLK

SDI

CLK

SDI

CLK

SDI

CLK

SDO

CLK

SDO

CLK

SDO

SDO SDO

SDISDISDI1

SDO1

SCK1

74HC594 74HC594 74HC594

74HC165 74HC165 74HC165

Pi-Pico

RCLK RCLK RCLK

Load Load Load

Load

Latch

Fun with Series Outputs: LED Cube

8x8x8 LED Cube

Illustrate use of shift registers

Control 256 LEDs with 11 output

pins

4x4x4 LED Cube

Illustrate how an 8x8x8 cube works

Start with a 4x4 LED array

The anodes (+) connected together, going up and down

The cathodes (-) connected together going left to right (the floor)

Level 1

Level 2

Level 3

Level 4

A(1,x) A(1,2) A(1,3) A(1,4)

Add three more 4x4 LED arrays

Creating a 4x4x4 cube

Short the levels together

Only one wire required to short

More can be added for strength

Level 1

Level 2

Level 3

Level 4

A(1,x) A(1,2) A(1,3) A(1,4)

Add resistors and transitors for the levels

Power each element with outputs from shift registers

20 outputs total (three shift registers)

Level 1

Level 2

Level 3

Level 4

A(1,1) A(1,2) A(1,3) A(1,4)
200

200

200

200

200 200 200 200

Shift Register 1

0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15

16 17 18 19

Shift Register 2

Outputs

Software:

Turn on Level 4 (Out19 = 1)

Specify which LEDs on Level 4 are on

Wait 2ms

Repeat for each level

Level 1

Level 2

Level 3

Level 4

A(1,1) A(1,2) A(1,3) A(1,4)
200

200

200

200

200 200 200 200

Shift Register 1

0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15

16 17 18 19

Shift Register 2

Outputs

Net Result: LED Array

4x4x4 array:

Each LED has a 25% duty cycle

The SPI port uses 3 pins on the Pi-Pico

The SPI port drives

- 3 shift registers

- 20 output pins (4x4 + 4)

- 64 LEDs

With an 8x8x8 LED array

Each LED has a 12.5% duty cycle

The SPI port uses 3 pins on the Pi-Pico

The SPI port drives

- 3 shift registers

- 72 output pins (8x8 + 8)

- 256 LEDs

Summary:

Parallel I/O works

Good if you're only driving a few things

Serial I/O really opens up possibilities

SPI uses 3 or 4 wires

Cascading shift registers gives an almost unlimited number of I/O pins

Driving the SPI port can be done

Using bit-banging, or

Using the built-in features of the Pi-Pico

The latter is 100x faster

References
Pi-Pico and MicroPython

https://github.com/geeekpi/pico_breakboard_kit

https://micropython.org/download/RPI_PICO/

https://learn.pimoroni.com/article/getting-started-with-pico

https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

https://docs.micropython.org/en/latest/library/index.html

https://www.fredscave.com/02-about.html

Pi-Pico Breadboard Kit

https://wiki.52pi.com/index.php?title=EP-0172

Other

https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/

https://electrocredible.com/raspberry-pi-pico-external-interrupts-button-micropython/

https://peppe8o.com/adding-external-modules-to-micropython-with-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-esp32-esp8266-micropython/

