
Analog I/O

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #9

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction:

Up to now, we have been dealing with binary inputs and outputs (I/O).

The real world is typically analog, however.

Voltages can take on any value - not just 0V and 3.3V

Resistance's can take on any positive value

Temperatures can be any value

Microcontrollers like the Pi-Pico usually allow analog I/O

A/D: Read an analog input

D/A: Drive an analog outputo can read

This lecture looks at how to input and output analog signals from a Pi-Pico.

A/D Pi-Pico D/A

Analog Input Analog OutputDigital

Signal

Digital

Signal

Analog Inputs: A/D

The Pi-Pico has five 12-bit A/D ports built in
- with three connected to I/O pins.

ADC0: joystick x position

ADC1: joystick y position

ADC2: voltage on GP28

ADC3: is not connected, and

ADC4: the temperature of the Pi-Pico

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0

GP1

GND

GP2

GP3

GP4

GP5

GND

GP6

GP7

GP8

GP9

GND

GP10

GP11

GP12

GP13

GND

GP14

GP15 GP16

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28

GND

GP27

GP26

RUN

GP22

GND

GP21

GP20

GP19

GP18

GND

GP17

ADC0(X)

ADC1(Y)

ADC2

ADC_VREF

USB

Reading the Joystick Position

x = ADC0 (pin 26)

y = ADC1 (pin 27)

0V = 0

3.3V = 65,535

from machine import ADC

from time import sleep_ms

a2d0 = ADC(0)

a2d1 = ADC(1)

while(1):

 x = a2d0.read_u16()

 y = a2d1.read_u16()

 print(x, y)

 sleep_ms(200)

Left vs. Right Justified

The Pico has a 12-bit A/D

0 to 4095 if right justified

0 to 65,535 if left justified

Left justified allows the code to be independent of the A/D resolution

Max reading is 65,536 regardless of the number of bits

Makes the code more transportable

Kind of becoming the standard

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

12-bit A/D reading (0x000 to 0xFFF) 0 0 0 0

Reading 0V to 3.3V (Joystick Input)

The joystick consists of two potentiometers

Endpoint = 0V and 3.3V

Wiper = A/D input

As you move the joystick, the voltage goes from 0V to 3.3V

A/D reading is 0 to 65,535

3.3V

L/R Wiper (AN0)

Up/Down Wiper (AN1)

3.3V

Converting A/D Reading to Voltage

The A/D reading is proportional to volage

0V = 0

3.3V = 65,535

0.0V 0.5V 1.0V 1.5V 2.0V 2.5V 3.0V

0 65,520

3.3V

19,854 39,709 59.563

A/D Reading (left justified)

Voltage

Analog Inputs: A/D reading is proportional to voltage

Reading Voltage (cont'd)

Voltage is proportional to the A/D reading

Vi =

3.30V

65,520

 ⋅ A2D i

Sensitivity is one count (12-bits = 4095)

dV =

3.3V

4095

 = 806.86µV

A/D channels 0-2 read voltage

Connected to GPIO pins

A/D channel 4 measures the temeprature of the Pi-Pico
0C = 0.02927 ∗ (14940 − A2D4)

resolution = 0.468 deggrees C

Code

Read the voltage on

Joystick X (ADC0)

Joystick Y (ADC1)

Read the temperature of the
Pi-Pico

ADC4

Results:

Vx = 1.447679V

Vy = 1.499254V

temp = 23.21111C

from machine import ADC

from time import sleep_ms

a2d0 = ADC(0)

a2d1 = ADC(1)

a2d4 = ADC(4)

k = 3.3 / 65535

while(1):

 a0 = a2d0.read_u16()

 a1 = a2d1.read_u16()

 a4 = a2d4.read_u16()

 V0 = a0 * k

 V1 = a1 * k

 Temp = 0.02927*(14940 - a4)

 print(V0, V1, Temp)

 sleep_ms(200)

shell

 Vx Vy degrees C

1.447679 1.499254 23.21111

1.435554 1.501671 23.21111

Reading 0-10V:

The Pi-Pico always reads 0V to 3.3V

To read 0..10V

Convert 0-10V to 0-3.3V

Voltage divider with a gain of 0.33

If R1 = 1k, then

R2 =

1−0.33

0.33

R1 = 2.03k ≈ 2k

0..+10V

R1 = 2k

R1 = 1k

0..3.3V
AN2

Pi-Pico

Code for Reading 0..10V

Scale the computed voltage accordingly:

from machine import ADC

from time import sleep_ms

a2d2 = ADC(2)

k = 10.0 / 65535

while(1):

 a2 = a2d2.read_u16()

 V2 = a2 * k

 print(V2, ' Volts')

 sleep_ms(200)

shell

4.9932 Volts

5.0221 Volts

Reading -10V to +10V:

To convert -10V to +10V to 0 to 3.3V, use three resistors

Other solutions exist

If

x: -10V to +10V

B: +3.3V

C: 0V

the output should be

y = (x + 10)
3.3V

20V

 = 0.1650x + 1.650

You can set this up as a weighted average of {A, B, C}

y = (0.1650x + 0.500B)

Add a term so the coefficients add to 1.000

y = 0.1650x + 0.500B + 0.335C

Pick your favorite resistor value, such as 1k.

The weightings tell you how the resistors are scaled:

Rx = 1k

0.1650
= 6.06k

Rb = 1k

0.500
= 2k

Rc = 1k

0.335
= 2.98k

-10V .. +10V

Rx = 6k

Rc = 3k

AN2
Pi-Pico

+3.3V

Rb = 2k

x
y

0V < y < 3.3V

The corresponding Python code would be:

-10V reads as 0

+10V reads as 65,535

from machine import ADC

from time import sleep_ms

a2d2 = ADC(2)

k = 20.0 / 65535

while(1):

 a2 = a2d2.read_u16()

 V2 = k * a2 - 10

 print(V2, ' Volts')

 sleep_ms(200)

shell

0.12131 Volts

0.01231 Volts

Analog Outputs:

Analog outputs can assume multiple values between 0V and 3.3V

In theory, infinite values

In practice, a finite but large number of values

Example: output a half-rectified since wave with a period of 2 seconds:

Using PWM, PWM + Filter, D/A

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.5

1

1.5

2

2.5

3

3.5

Time (seconds)

Volts

PWM (pulse width modulation)

From before, the machine library has a PWM function

This allows you to output

A square wave,

At a given frequency,

With a given duty cycle.

For example, the following code outputs a

1kHz square wave (line 5)

with a frequency of 1kHz (line 6: 10% of 65,535 = 6553)

1

2

3

4

5

6

7

8

from machine import Pin, PWM

Aout = Pin(16, Pin.OUT)

Aout = PWM(Pin(16))

Aout.freq(1000)

Aout.duty_u16(6553)

while(1):

 pass

If you adjust the duty cycle, you can vary the average from 0V (0%) to 3.3V
(100%). To output a half-rectified sine wave, vary the duty cycle according
to the figure below:

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Time (seconds)

0xFFFF (3.3V)

0x000 (0.0V)

0x4D93 (1.0V)

0x9B26 (2.0V)

0xE8B9 (3.0V)

Duty Cycle

By varying the duty cycle, you can output any voltage from 0.0V to 3.3V

Code:

To speed up execution

A look-up table is used

sin() is computed prior to the
main loop

from machine import Pin, PWM

from time import sleep_ms

from math import sin, pi

Aout = Pin(16, Pin.OUT)

Aout = PWM(Pin(16))

Aout.freq (1000)

Table = []

for i in range(0,100):

 Table.append(int(65535*sin(i*pi/100)))

for i in range(0,100):

 Table.append(0)

i = 0

while(1):

 i = (i + 1) % 200

 Aout.duty_u16(Table[i])

 sleep_ms(10)

If you look at an LED attached to GP16, the LED will be fading in and out
as desired. If you look on an oscilloscope, however, you'll see noise:

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.5

1

1.5

2

2.5

3

3.5

Time (seconds)

Volts

Average (Low-Frequency Term)

Waveform on GP16

PWM & Frequency Content

The PWM signal contains

The signal (blue line) at 1Hz, and

Harmonics of the 1kHz PWM waveform (red line)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.5

1

1.5

2

2.5

3

3.5

Time (seconds)

Volts

Average (Low-Frequency Term)

Waveform on GP16

To output a clean signal, you want to

Pass the low frequency terms (frequencies below something like 10Hz), and

Reject frequencies above 1kHz.

In short, you need to add a low-pass filter.

0.1 1 10 100 1000 10000
Frequency (Hz)

Signal (Low Frequencies) Noise (PWM) High FrequenciesLow-Pass Filterpass-band

reject band

Add a low-pass filter to pass the signal (frequencies below 10Hz) and reject noise (frequencies above 1kHz)

There are many types of low-pass filters. Two of these are

A single-stage RC low-pass filter, and

An active 2nd-order low-pass filter

RC Low-Pass Filter: RC filters are simple and not very good. It works OK
in this application since there is a large separation between the signal
(<10Hz) and the noise (PWM at 1kHz).

Typically, you place the corner frequency (1/RC) in-between the pass-band
(10Hz) and the reject band (1kHz). Assume for convenience you pick 100
rad/sec or 15.9Hz:

1

RC
= 100rad

sec = 15.9Hz

The gain of the filter is then

y =

1
RC

s+
1

RC

x =

100

s+100

 x

What this filter does is

For frequencies below 100 rad/sec (15.9Hz), the gain is approximately one.

For frequencies above 100 rad/sec, the gain drops off as 1/s.

At 1kHz (6280 rad/sec), the gain is 0.016: noise at 1kHz is attenuated by a
factor of 0.016

Going back to the 1/2-wave rectified since wave. What you expect the
output of the filter to be is:

A DC term (unchanged - the DC gain is one), and

An AC term which has been attenuated.

You can approximate the amplitude of the AC term (i.e. the noise on the
signal) as

Output = Gain ⋅ Input

At 1kHz, the PWM signal is a 3.3Vpp square wave.

At 1kHz (6280 rad/sec), the gain of the filter is

gain =

100

s+100

s=j6280

Putting it together, the AC (noise) component of the filter's output should
be:

y =

100

s+100

 x

y ≈

100

s+1000

s=j6280
⋅ 3.3Vpp

y ≈ 0.0525Vpp

The signal at y should have the DC term plus a 52.5mVpp ripple.

You can check this in CircuitLab. Running a time-domain simulation
results in the ripple actually being 80mVpp

Time-Domain Simulation: The RC filter passes the DC term (average voltage is 1.65V)
The ripple has been reduced from 3.3Vpp to 80mVpp

If you apply the RC filter to the output of the PWM signal, the output
should look like this:

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

1

2

3

Time (seconds)

Volts

Output of the PWM & RC Low-Pass Filter.
The noise on the signal is due the PWM signals at 1kHz getting through the filter.

Active 2nd-Order Low-Pass Filter: A better filter would be a 2nd-order
Butterworth low-pass filter:

2nd-order Butterworth low-pass filter with corner at 100 rad/sec V0 represents the PWM output of a Pi-Pico

The magnitude of the poles (aka the corner frequency) is set by R5*C4
1

R5C4
= 100

The angle of the poles is set by R8 and R9

k = 1 +
R9

R8

3 − k = 2 cos θ

The above circuit gives poles at 100 with an angle of 45 degrees (a
2nd-order Butterworth low-pass filter).

The gain of this filter is

y =

1002⋅k

s+100∠450

s+100∠−450

 x

or

y = k
1002

s2+141s+1002

 x

The DC gain is 1.58 (k), meaning the DC term at x (0..3.3V) will be
(0..5.21V) at y.

The ripple at x is 3.3Vpp

The ripple at y will be approximately

y ≈ k
1002

s2+141s+1002

s=j6280
⋅ 3.3Vpp

y ≈ 0.0013

Meaning y(t) should have

A DC term of 2.61V (1.58 * 50% of 3.3V)

An AC term of 1.3mVpp

In CircuitLab, you can check the actual result is

DC term = 2.632V (as expected)

AC term = 1.6mVpp (slightly larger than calculated)

Output of the Butterworth Low-Pass Filter: A DC term with 1.6mVpp ripple

The output of the PWM signal plus filter looks much smoother than the RC
filter.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

1

2

3

4

5

Time (seconds)

Volts

Output of PWM signal & a 2nd-order Active Low-Pass Filter
Less noise at 1kHz gets through the filter, producing a smoother output

D/A Converter: MCP4921

D/A: Digital to Analog converter

Outputs 0V to Vdd analog

2.7V < Vdd < 5.5V

12-bit D/A (meaning 4096 steps)

SPI data interface

$2.81 each (Digikey as of June 7, 2024)

Like the A/D, the D/A's voltage is proportional to the number written to it:

D/A_Out =

#
4095

 ⋅ Vdd

Vdd can be anything from 2.7V to 5.5V

5.5V doesn't hurt a Pi-Pico

No data is sent back to the Pi-Pico

The connections for a MCP4921 to a Pi-Pico are:

Pi-Pico

MCP4921

GP09

GP10

GP11

Vdd

CS

CLK

DATA

Vout

Vss

REF

LDAC

+Vdd

+Vdd

gnd

gnd

2.7V < Vdd < 5.5V

Output

Three output pins are needed to drive the MCP4921.
Any pins can be used for bit-banging, the SPI port is needed if using the SPI module in machine

To send a 12-bit number,

Pad the first four bits of the message with binary 0011

Then, pull chip-select low (CS = 0)

Clock in each bit, starting with the most significant bit.

Once all 16 bits have been sent, pull CS high.

At that point, a voltage should appear on Vout

CS

CLK

DIN 0 0 1 1 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

Timing diagram for a MCP4921

You can implement this in
software with a bit-banging
routine:

from machine import Pin

from time import sleep_ms, sleep_us, ticks_us

CLK = Pin(10, Pin.OUT)

DATA = Pin(11, Pin.OUT)

CS = Pin(9, Pin.OUT)

def MCP4921(X):

 X = X & 0x0FFF

 X = X | 0x3000

 CS.value(0)

 CLK.value(0)

 sleep_us(1)

 for i in range(0,16):

 if(X & (0x8000 >> i)):

 DATA.value(1)

 else:

 DATA.value(0)

 CLK.value(1)

 sleep_us(1)

 CLK.value(0)

 sleep_us(1)

 CS.value(1)

 DATA.value(0)

 sleep_ms(1)

x = 0

while(1):

 x = (x + 10) & 0x0FFF

 MCP4921(x)

 sleep_ms(1)

Counting results in a sawtooth wave

Count goes from 0 to 4095

Voltage goes from 0V to 3.3V (Vdd)

If you look at the CLK and DATA lines on an oscilloscope, you can see the
data being clocked out as well:

CLK (yellow) and DATA (blue) lines going to the MCP4921 D/A chip

Using the SPI function is better

1700us with bit-banging

120us with SPI

Also simplifies the code

from machine import Pin, SPI

from time import sleep_ms, sleep_us,

ticks_us

CS = Pin(9, Pin.OUT)

spi = SPI(1, baudrate=10_000_000,

polarity=0, phase=1, bits=8, sck=10,

mosi=11, miso=12)

def MCP4921(X):

 X = X & 0x0FFF

 X = X | 0x3000

 Y = bytearray()

 Y.append(X >> 8)

 Y.append(X & 0xFF)

 CS.value(0)

 spi.write(Y)

 CS.value(1)

x = 0

while(1):

 x = (x + 10) & 0x0FFF

 MCP4921(x)

 sleep_ms(1)

By using the SPI funciton, data is sent at 10MHz

14x faster than bit-banging

Oscilloscope traces show limitations of a 60MHz scope.

CLK and DATA lines as seen on a 60MHz oscilloscope

Output when the SPI bus is clocked at 10MHz.
The D/A is working at this speed: the output is a sawtooth wave when counting

Output -10V to +10V

Finally, if you want to output something other than 0V to 3.3V, an
instrumentation amplifier can be added to the output. The gain of the
following circuit is

Y =

R1

R2

 (A − B)

Y

A

B

R1R2

R1R2

Instrumentation Amplifier

If you want the output to go from -10V to +10V and x represents the D/A
output

 D/A outputx = 0V..3.3V

then

y = 6.06x − 10

Rewriting this in the form of the previous equation

y = 6.06(x − 1.65)

Let

A = x

B = 1.65V

(R1/R2) = 6.06

then adding an instrumentation amplifier to the output of the D/A will
produce

-10V when you write 0x000 to the D/A

+10V when you write 0xFFF to the D/A

Y

60k10k

60k10k

D/A Output

1.65V

-10V .. +10V

Summary:

With a little code and some hardware, it isn't hard to

Read analog voltages or

Output analog voltages

When using a chip with an SPI input, you can use bit-banging to drive this
device. Bit-banging has the advantage that you have complete control over
how data is sent - but it tends to be slow. Using the built-in SPI port allows
10MHz or more data transfers, speeding up the process considerable (it also
simplifies the code.)

References
Pi-Pico and MicroPython

https://github.com/geeekpi/pico_breakboard_kit

https://micropython.org/download/RPI_PICO/

https://learn.pimoroni.com/article/getting-started-with-pico

https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

https://docs.micropython.org/en/latest/library/index.html

https://www.fredscave.com/02-about.html

Pi-Pico Breadboard Kit

https://wiki.52pi.com/index.php?title=EP-0172

Other

https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/

https://electrocredible.com/raspberry-pi-pico-external-interrupts-button-micropython/

https://peppe8o.com/adding-external-modules-to-micropython-with-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-esp32-esp8266-micropython/

