
Motors with Binary Inputs

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #10

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction:

Part of the fun of being an engineer is you build things.

Motors let you build things that move

Examples: valves, robotic arms, cars, etc.

Several type of motors exist

Smaller motors often have digital inputs (this lecture)

Larger motors often have analog inputs (next lecture)

This lecture looks at driving with a Pi-Pico

Stepper Motors,

Solenoids,

Brushless Servo-Motors (using pulse-width), and

Digital Servo Motors (using pulse width)

Stepper Motors

Stepper motors are a common type of motor

These interface well with microcontrollers.

Actually 2-phase AC synchronous motors

Input: a 2-phase AC sine wave (sine & cosine)

The frequency sets the motor speed

rotating

magnetic

field

N

S

A C

Phase AC (sine)

Phase BD

(cosine)

B

D

Iac (sine) Ibd (cosine)

Stepper Motor

What's inside a stepper motor?

Rotor:

The thing that spins

Permanent magnets
- number varies

North & South poles
- two poles per magnet

Stator

Attached to the case
- (doesn't spin)

Can attract the N or S pole
- depends on the direction of

current flow

Stepper Motors: Hardware

The hardware must allow current to flow both
ways in each winding

Sine waves are positive and negative

H-bridges are used to drive a stepper motors

DRV883 from ebay and Amazon

3V to 10V operation

Up to 1.5A per phase

Max power = 15W

About $1.30 each (2024 prices)

Higher power H-bridges are also available

Connections to your Pico board are as follows:

Note: Pins for IN2 and IN3 need to be swapped as show

GP16

GP17

GP18

GP19

Pi-Pico

DRV8833

IN1

IN2

IN3

IN4

OUT1

OUT2

OUT3

OUT4

A

C

B

D

Stepper

Motor

A

B

C

D

VCC

GND

+3V to +10V @ 1.5A

Four wires from the Pico needed to drive the stepper motor

Software & Stepping

If you approximate a sine wave with a square wave, the motor steps.

The number of steps per rotation depends upon the motor

How many magnetic poles per rotation

The ones in lab have 50 poles
- 50 sine waves equals one rotation

It also depends upon how you approximate a sine
wave:

Full-Stepping
- four steps per cycle
- 200 steps per rotation,

Half-Stepping
- eight steps per cycle
- 400 steps per rotation

Micro-Stepping
- more than eight steps per cycle

N

N

N

N

N

N

S

S

SS

S

S

Rotor

Stator

S

N

S

N

Software - Full Stepping

Approximate sine waves with square waves.

On for one clock

Off for one clock

Output two square waves

sine & cosine

This results in 4 steps per cycle

A - B - C - D - repeat

reverse the order to spin the other way

200 steps per roation

Phase AC

Phase BD

A

C

A

C

D

B

D

B

D

A B C D A B C D

Sequence:

One Cycle

4 steps per cycle

(full stepping)

Full Stepping: Code

Output the sequence

A - B - C - D

repeat

Use a table with 8 entries

One for each step

A = 0001 = 1

B = 0010 = 2

C = 0100 = 4

D = 1000 = 8

Stepper Motor - Full Stepping

from time import sleep_ms

from machine import Pin

PA = Pin(16,Pin.OUT)

PB = Pin(17,Pin.OUT)

PC = Pin(18,Pin.OUT)

PD = Pin(19,Pin.OUT)

TABLE = [1, 2, 4, 8]

def Step(X):

 Y = TABLE[X % 4]

 PA.value(Y & 8)

 PB.value(Y & 4)

 PC.value(Y & 2)

 PD.value(Y & 1)

x = 0

for i in range(0,100):

 x += 1

 Step(x)

 sleep_ms(10)

Software - Half-Stepping

Approximate sine waves with square waves

on for 3 clocks

off for 1

Output two square waves

Sine & Cosine

This results in 8 steps per cycle

A, AB, B, BC, C, CD, D, DA

repeat

400 steps per rotation

Phase AC

Phase BD

A

C

A

C

D

B

D

B

D

Sequence:

One Cycle

8 steps per cycle

(half stepping)

A A A C C C A A A C C C
B B B D D D B B B D D DDD

Half-Stepping Code

Use a table with 8 entries

One for each step

A = 0001 = 1

AB = 0011 = 3

B = 0010 = 2

BC = 0110 = 6

C = 0100 = 4

CD = 1100 = 12

D = 1000 = 8

DA = 1001 = 9

Stepper Motor - Half Stepping

from time import sleep_ms

from machine import Pin

PA = Pin(16,Pin.OUT)

PB = Pin(17,Pin.OUT)

PC = Pin(18,Pin.OUT)

PD = Pin(19,Pin.OUT)

TABLE = [1, 3, 2, 6, 4, 12, 8, 9]

def Step(X):

 Y = TABLE[X % 8]

 PA.value(Y & 8)

 PB.value(Y & 4)

 PC.value(Y & 2)

 PD.value(Y & 1)

x = 0

for i in range(0,200):

 x += 1

 Step(x)

 sleep_ms(10)

Micro-Stepping:

A third option is to use PWM to approximate a sine and cosine wave.

This is termed micro-stepping.

The number of levels per cycle is arbitrary

PWM allows any voltage from 0% to 100%

Phase A/C

Phase B/D

A

C

A

C

A

100%

B

D

B

D

0%

100%
100%

0%

100%

MicroStepping: 16 Steps per Cycle

Initialization of the three outputs

Phase A

Phase B

Phase C

Each is a PWM output

100Hz

Duty cycle will vary

Result is 800 steps per rotation

50 x 16

from machine import Pin, PWM

from time import sleep_ms

PA = Pin(16,Pin.OUT)

PA = PWM(Pin(16))

PA.freq(100)

PA.duty_u16(0)

PB = Pin(17,Pin.OUT)

PB = PWM(Pin(17))

PB.freq(100)

PB.duty_u16(0)

PC = Pin(18,Pin.OUT)

PC = PWM(Pin(18))

PC.freq(100)

PC.duty_u16(0)

PD = Pin(19,Pin.OUT)

PD = PWM(Pin(19))

PD.freq(100)

PD.duty_u16(0)

MicroStepping (cont'd)

A table specifies the PWM signal

1/2 wave rectified sine wave

0 = 0%

65,535 = 100%

Each phase is offset

A = 0 degree delay

B = 90 degree delay

C = 180 degree delay

D = 270 degree delay

TABLE16 = [0, 24874, 45962, 60052, 65000,

60052, 45962, 24874, 0, 0, 0, 0, 0, 0,

0, 0]

def Step16(X):

 A = TABLE16[X % 16]

 PA.duty_u16(A)

 B = TABLE16[(X+4) % 16]

 PB.duty_u16(B)

 C = TABLE16[(X+8) % 16]

 PC.duty_u16(C)

 D = TABLE16[(X+12) % 16]

 PD.duty_u16(D)

x = 0

for i in range(0,800):

 x += 1

 Step16(x)

 sleep_ms(5)

PA.duty_u16(0)

PB.duty_u16(0)

PC.duty_u16(0)

PD.duty_u16(0)

MicroStepping with 32 steps per cycle

Use a bigger table and you get
finer resolution

pre-compute sin(x)

faster program execution

Result is 1600 steps / rotation

50 x 32

No limit on the number of steps per
cycle

TABLE32 = [0, 12681, 24874, 36112,

45962, 54046, 60052, 63751, 65000,

63751, 60052, 54046, 45962, 36112,

24874, 12681, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0]

def Step32(X):

 A = TABLE32[X % 32]

 PA.duty_u16(A)

 B = TABLE32[(X+8) % 32]

 PB.duty_u16(B)

 C = TABLE32[(X+16) % 32]

 PC.duty_u16(C)

 D = TABLE32[(X+24) % 32]

 PD.duty_u16(D)

x = 0

for i in range(0,1600):

 x += 1

 Step32(x)

 sleep_ms(5)

PA.duty_u16(0)

PB.duty_u16(0)

PC.duty_u16(0)

PD.duty_u16(0)

Solenoids

A solenoid is an electromagnet which can either pull or push a rod back and
forth. Think of it as an electronic deadbolt:

When de-energized, the deadbolt locks the door.

When energized, the deadbolt is pulled back, allowing the door to open.

Since this is an of/off device, a simple binary output from the Pico can be
used.

Sample Solenoid: Applying 12V to the leads draws 1A and applies 60N of force

Assume for example a uxcell 12V solenoid is to be driven by a Pi-Pico.

To turn on this solenoid, you need:

V = 12V

I = 1A @ 12V

Since a Pi-Pico can't output 12V or 1A
directly, add a transistor switch (assume a
ZTX1051A NPN transistor).

Digikey Part: ZTX1051A

Ic(max) = 4A

DC Current Gain (min): 300 @ 1A, 2V

Vce(sat) = 210mV @ 1000mA

$0.68 (qty 100)

+12V

Solenoid 1A flyback

diode

Rb = 330

Ib

Zetex 1051A

NPN

GP19

To saturate the transistor, you need

hfe ⋅ Ib > Ic

300 ⋅ Ib > 1A

12mA > Ib > 3.33mA

(12mA is the max output of a PiPico)

Rb is then

Rb =

3.3V−0.7V

Ib

217Ω < Rb < 780Ω

Anything in this range should work.

Let Rb = 330 Ohms.

Add a flyback diode to save the transistor
- inductive load

+12V

Solenoid 1A flyback

diode

Rb = 330

Ib

Zetex 1051A

NPN

GP19

Solenoid Code:

A simple 1/0 on the output turns the solenoid on and off

Output a 1

Solenoid turns on

Lock open

Output a 0

Solenoid turns off

Lock closed

Turning a solenoid on and off
from machine import Pin

from time import sleep

GP19 = Pin(19,Pin.OUT)

while(1):

 print('Solenoid On')

 GP19.value(1)

 sleep(1)

 print('Solenoid Off')

 GP19.value(0)

 sleep(1)

Brushless DC Motors

Brushless DC motors have become all
the rage since about 2010

quadcopters

RC cars

RC aircraft

They're small, inexpensive, and
powerful

$20 for the one shown
- includes ESC controller

120W (10V @ 12A)

Larger ones are available

$29 for 1000W (1.5hp)

46 grams

An ESC controller acts as the interface

Inputs:

Red: +3.3V

Black: Ground

White: Control Signal from Pi-Pico

4V ..7V @ 30A

Ground

+5V

Red

Black

Red

Black

White

A

B

C

ESC Motor

Pi-Pico

GPx Control

gnd
0V

Connections from a Pi-Pico to a BLDC motor.

Controlling the Motor Speed

The control input is a square wave:

Frequency = 50Hz to 330Hz

Stop (power on): 0.9ms pulse

Slow: 1.2ms pulse

Fast: 3.0ms pulse

Fast

0 0.5 1 1.5 2 2.5 3 3.5
Pulse Width (ms)

Idle Slow

The speed of the BLDC motor is set by the pulse width on the Control line

Sample Code

Frequency = 50Hz

T = 20ms

Startup:

Pulse-Width = 0.9ms

Press GP15 button to start

Running:

slow = 1.2ms

fast = 3.0ms

proportional inbetween

from machine import Pin

from time import sleep

GP15 = push button

GP16 = control input to BLDC

Button = Pin(15, Pin.IN, Pin.PULL_UP)

Control = Pin(16, Pin.OUT)

Control = PWM(Pin(16))

Control.freq(50)

Control.duty_ns(900_000)

while(Button.value() == 1):

 pass

while(1):

 print('slow')

 Control.duty_ns(1_200_000)

 sleep(1)

 print('fast')

 Control.duty_ns(3_000_000)

 sleep(1)

Digital Servo Motor

Similar to a BLDC

Motor is geared down

Slower output speed

Higher torque

Two Types:

Output = Angle (shown)
- Open / close a valve
- Turn steering wheels
- Pan & tilt camera
- Specify the position of a robotic arm

Output = Speed
- 360 degree servo motor
- Set the speed of an RC car

Digital Servo Motor: Control Input

Similar to a BLDC: 3-wires

Red: 5.0V to 6.8V, up to 3.0A (varies with the motor)

Black: Ground

White: Control Input

The control input controls the output

Example: 270 degree digital servo motor

Frequency = 50 - 330Hz

Pulse Width = 500 - 2500us

0 0.5 1 1.5 2 2.5 3 3.5
Pulse Width (ms)

0 degrees 270 degrees135 degrees

The pulse width sets the angle of the motor

Digital Servo Motor: Hardware

Wiring a Digital Servo Motor is fairly simple

You need a common ground

The Pi-Pico provides the control signal
- PWM singal

External power is applied to the red wire

5.0 .. 6.8V @ 3A

Ground

Red

Black

White

Pi-Pico

GPx Control

Digital

Servo

Motor

Digital Servo Motor: Code

The code is almost the same as
before.

This code has two input buttons

GP14 decreases the angle
- pulse width gets smaller

GP15 increases the angle
- pulse width gets larger

GP16 is the control input

from machine import Pin

from time import sleep_ms

GP14 = push button (decrease angle)

GP15 = push button (increae angle)

GP16 = control input to digital motor

Up = Pin(15, Pin.IN, Pin.PULL_UP)

Down = Pin(14. Pin.IN, Pin.PULL_UP)

Control = Pin(16, Pin.OUT)

Control = PWM(Pin(16))

Control.freq(50)

x = 1_500_000

while(1):

 if(Up.value() == 0):

 x += 1000

 if(Down.value() == 0):

 x -= 1000

 if(x < 500_000):

 x = 500_000

 if(x > 2_500_000):

 x = 2_500_000)

 Control.duty_ns(x)

 sleep_ms(1)

Continuous Rotation Servo Motor

Used for driving a car, etc

For the example given here:

Red = 4.8V - 6.0V

No-Load Current: 100mA

Stall Current: 550mA

Pulse Width: 700 - 2300 us

No-Load Speed: 110 rpm

Price:

$15 for two (2024 prices)

Control Signals

The pulse width sets the speed:

CW: 1500us - 700us

CCW: 1500us - 2300us

Stop: 1500us +/- 45us

0 0.5 1 1.5 2 2.5 3 3.5
Pulse Width (ms)

FastFast StopCW CCW

Wiring to a Pi-Pico is similar to before:

4.8 .. 6.0V @ 550mA

Ground

Red

Black

White

Pi-Pico

GPx Control

Continuous

Servo

Motor

Wiring from a Pi-Pico to a Continuous Servo Motor

Code:

Coding is almost the same

Button 15: Increase the speed

Button 14: Decrease the speed

GP16: Control input

Just set the limits to

min = 700us
- reverse fast

max = 2300us
- forward fast

from machine import Pin

from time import sleep_ms

GP14 = push button (decrease angle)

GP15 = push button (increae angle)

GP16 = control input to motor

Up = Pin(15, Pin.IN, Pin.PULL_UP)

Down = Pin(14. Pin.IN, Pin.PULL_UP)

Control = Pin(16, Pin.OUT)

Control = PWM(Pin(16))

Control.freq(50)

x = 1_500_000

while(1):

 if(Up.value() == 0):

 x += 1000

 if(Down.value() == 0):

 x -= 1000

 if(x < 700_000):

 x = 700_000

 if(x > 2_300_000):

 x = 2_300_000)

 Control.duty_ns(x)

 sleep_ms(1)

Summary:

Digital motors are pretty easy to interface with a Pi-Pico:

With a stepper motor, you mimic a 2-phase sine wave with four wires
from the Pi-Pico

With digital servo motors, you control the speed with a pulse width.

Note that these motors are low-power:

The stepper motor draws 3A @ 5V, meaning 15W

The digital servo motor draws 2A @ 5V, meaning 10W

The continuous servo motor draws 550mA @ 5V, meaning 2.7W

Subtract losses in the motors and the power these can deliver is fairly small.
If that's all you need, however, these are easy ways to interface motors to a
Pi-Pico.

References
Pi-Pico and MicroPython

https://github.com/geeekpi/pico_breakboard_kit

https://micropython.org/download/RPI_PICO/

https://learn.pimoroni.com/article/getting-started-with-pico

https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

https://docs.micropython.org/en/latest/library/index.html

https://www.fredscave.com/02-about.html

Pi-Pico Breadboard Kit

https://wiki.52pi.com/index.php?title=EP-0172

Other

https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/

https://electrocredible.com/raspberry-pi-pico-external-interrupts-button-micropython/

https://peppe8o.com/adding-external-modules-to-micropython-with-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-esp32-esp8266-micropython/

