
Edge Interrupts

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #16

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction:

Interrupts are a strange beast

but they're really useful.

An interrupt is

A subroutine

Called by hardware

With interrupts, someone else is calling

subroutines in your program.

This lecture looks at

Edge triggered interrupts on a Pi-Pico,

Why you might want to use them, and

Some things you can do with them

Polling vs. Interrupts

Polling:

So far, we've been using polling

The main routine checks the input pins over

and over

Edges are detected when the value of the

pin is different from its last reading

Interrupts:

In this lecture, we introduce interrupts

With interrupts, hardware detects the rising

& falling edge

When detected, a subroutine is called

- The interrupt service routine

Rising Edge

Detected
Falling Edge

Detected

Sampling Times

Polling

Interrupts

Rising Edge

Call Subroutine
Falling Edge

Call Subroutine

Interrupts and Global Variables

Global variables are variables that

everyone can see

In Computer Science I, you're told

Never never use global variables

Global variables mess up your

program

Global variables make debugging a

pain

In this course,

Go ahead and use global variables

Global variables can be useful

Sometimes they're necessary

from machine import Pin

interrupt_flag=0

N = 0

pin = Pin(15,Pin.IN,Pin.PULL_UP)

def IntServe(pin):

 global interrupt_flag

 global N
 interrupt_flag=1

 N = N + 1

pin.irq(trigger=Pin.IRQ_FALLING,

handler=IntServe)

while(1):

 if(interrupt_flag):

 print("N = ", N)
 interrupt_flag=0

About the only way to pass data to a subroutine you didn't call is through global variables.

Edge Interrupts: Up Counter

Interrupt Example: Up Counter

Increase a count by one each time you

press button GP15.

Similar to before, assume

GP15 is connected to an internal

pull-up resistor to +3.3V, and

When you press the button, pin GP15

is grounded.

Net Result:

Button Press = Falling Edge

Count every falling edge on GP15

Count on button press

(falling edge)

GP15

Pi-Pico

3.3V

50k-65k

pull-up

Button

Up Counter: Python Code

IntServe(pin):

The interrupt service routine

Increment N every time called

Set a flag every time N increments

N & flag are global variables

Set up the interrupt for falling edges

Tell Python the name of the interrupt

service routine

Main Routine

Each time the flag is set

Print the count and

Clear the flag

Up Counter using interrupts
from machine import Pin

flag=0

N = 0

pin = Pin(15,Pin.IN,Pin.PULL_UP)

def IntServe(pin):

 global flag

 global N

 flag = 1

 N = N + 1

pin.irq(trigger=Pin.IRQ_FALLING,

handler=IntServe)

while(1):

 if(flag):

 print("N = ", N)

 flag=0

Shell

N = 1

N = 2

N = 3

Note the following:

Each time you press the button, an

interrupt is called (falling edge)

Data is passed using global variables

- About the only way to do it

To detect rising edges, use
 trigger=Pin.IRQ_RISING

To detect falling edges, use
 trigger=Pin.IRQ_FALLING

To detect both edges
 trigger = Pin.IRQ_RISING |

 Pin.IRQ_FALLING

Up Counter using interrupts
from machine import Pin

flag=0

N = 0

pin = Pin(15,Pin.IN,Pin.PULL_UP)

def IntServe(pin):

 global flag

 global N

 flag = 1

 N = N + 1

pin.irq(trigger=Pin.IRQ_FALLING,

handler=IntServe)

while(1):

 if(flag):

 print("N = ", N)

 flag=0

Shell

N = 1

N = 2

N = 3

Also also...

Keep the interrupt routine simple

Get in then get out

Don't use loops inside interrupts: they

take too long to execute.

Never use a while-loop inside an

interrupt: if you're stuck inside the

interrupt the main routine doesn't

execute.

If-statements are OK - you only

evaluate these once.

Any variables you want to save for later

or pass to the main routine need to be

global variables.

Up Counter using interrupts
from machine import Pin

flag=0

N = 0

pin = Pin(15,Pin.IN,Pin.PULL_UP)

def IntServe(pin):

 global flag

 global N

 flag = 1

 N = N + 1

pin.irq(trigger=Pin.IRQ_FALLING,

handler=IntServe)

while(1):

 if(flag):

 print("N = ", N)

 interrupt_flag=0

Shell

N = 1

N = 2

N = 3

Example: StopLight & Bottom-Up Programming:

Write a program for a stoplight

N/S light: Green / Yellow / Red

E/W light: Green / Yellow / Red

Use interrupts to change the colors

Ring counter: 0 / 1 / 2 / 3 / 4 / 5

N/S = G / Y / R / R / R / R

E/W = R / R / R / G / Y / R

Use bottom-up programming

Write the program step-by-step

Check & validate code as you write it

N/S Light E/W Light

Step 1: Display Routine

Subroutine which is passed:

Light:

- 0 = Red

- 1 = Yellow

- 2 = Green

(x,y) location of the light

- N/S and E/W light

Start with the display routine with bottom-up

programming

Being able to see your results will help with

debugging the rest of the program

def Display(Light, x, y):

 Red = LCD.RGB(200,0,0)

 Yellow = LCD.RGB(200,200,0)

 Green = LCD.RGB(0,200,0)

 Brown = LCD.RGB(30,30,0)

 Black = 0

 White = LCD.RGB(200,200,200)

 LCD.Solid_Box(x, y, x+50, y+150, Brown)

 LCD.Box(x, y, x+50, y+150, White)

 y += 10

 x += 10

 if(Light == 0):

 LCD.Solid_Box(x,y,x+30,y+30,Red)

 else:

 LCD.Solid_Box(x,y,x+30,y+30,Black)

 LCD.Box(x,y,x+30,y+30,White)

 y += 50

 if(Light == 1):

 LCD.Solid_Box(x,y,x+30,y+30,Yellow)

 else:

 LCD.Solid_Box(x,y,x+30,y+30,Black)

 LCD.Box(x,y,x+30,y+30,White)

 y += 50

 if(Light == 2):

 LCD.Solid_Box(x,y,x+30,y+30,Green)

 else:

 LCD.Solid_Box(x,y,x+30,y+30,Black)

 LCD.Box(x,y,x+30,y+30,White)

Test Code

Any time you write a routine, test

it

Write a short test program

Check that the program is

working correctly

Test code for stoplight
import time

import LCD

def Display(Light, x, y)

 :

Navy = LCD.RGB(0,0,5)

White = LCD.RGB(200,200,200)

LCD.Init()

LCD.Clear(Navy)

LCD.Text2('Stoplight',200,20,White,Navy)

Display(0, 100, 100)

Display(2, 200, 100)

Step 2: Light Sequence

Set up a ring counter

Count mod 6

Count once per second

Go through the light sequence:

0: G - R

1: Y - R

2: R - R

3: R - G

4: R - Y

5: R - R

Verify the code works

Main Routine: Cycle lights every second
Red = 0

Yellow = 1

Green = 2

while (1):

 N = (N + 1) % 6

 if(N == 0):

 Display(Green, 100, 100)

 Display(Red, 200, 100)

 if(N==1):

 Display(Yellow, 100, 100)

 Display(Red, 200, 100)

 if(N==2):

 Display(Red, 100, 100)

 Display(Red, 200, 100)

 if(N==3):

 Display(Red, 100, 100)

 Display(Green, 200, 100)

 if(N==4):

 Display(Red, 100, 100)

 Display(Yellow, 200, 100)

 if(N==5):

 Display(Red, 100, 100)

 Display(Red, 200, 100)

 print(N)

 time.sleep(1)

Note: While this routine works, it's really inefficient. >99% of the time is spent in the

sleep() statement.

Step 3: Add interrupts

Instead of counting every

second,

Count each button press

Note:

Counting is mod 6

- same as before

Global variables are used

- only way to pass data

A flag is used

- tells the main routine it's time

to update the LCD display

from machine import Pin

import time

N = 0

flag = 0

pin1 = Pin(15,Pin.IN,Pin.PULL_UP)

def CLK(pin1):

 global N, flag

 flag = 1

 N = (N+1)%6

pin.irq(trigger=Pin.IRQ_FALLING, handler=CLK)

Main Routine with Interrupts:

Main routine checks if the light

changed

- flag == 1

The lights are updated based upon

the ring-counter

- N = 0: green / red

- N = 1: yellow / red

- etc.

Main Routine

while (1):

 if(flag == 1):

 flag = 0

 if(N == 0):

 Display(Green, 100, 100)

 Display(Red, 200, 100)

 if(N==1):

 Display(Yellow, 100, 100)

 Display(Red, 200, 100)

 if(N==2):

 Display(Red, 100, 100)

 Display(Red, 200, 100)

 if(N==3):

 Display(Red, 100, 100)

 Display(Green, 200, 100)

 if(N==4):

 Display(Red, 100, 100)

 Display(Yellow, 200, 100)

 if(N==5):

 Display(Red, 100, 100)

 Display(Red, 200, 100)

 print(N)

Some problems with this routine is

You have to manually press for each change in the light.

- We'll fix this when we cover timer interrupts in the next lecture.

Sometimes you get multiple counts due to bouncing in the button.

- We'll fix this too

Debouncing:

Bouncing is a feature of mechanical switches

When they open and close, they bounce

This results in multiple edges each button press and each release

Debouncing eliminates this

Results in a single edge when you press and release the button

Both hardware and software can be used

Button Pressed Button Released

Bouncing Bouncing

Bouncing is when you get multiple edges each time you press and release a button

Hardware Debouncing:

Add a capacitor

Filters out the bouncing

Picking C so that the RC time constant is equal to the bounce time

- usually works

Assuming this is 10ms:

RC = 10ms

R is the internal pull-up resistor (50k to 65k), resulting in

C = 153nF..200nF

GP15

Pi-Pico

3.3V

50k-65k

pull-up

Button
C 10ms

GP15 w/o C

GP15 w/ C

Adding a capacitor filters is one way to remove bouncing

Software Debouncing:
Anything you can do in hardware you can do in software.

Add a dead-time

Once you detect an edge, ignore all subsequent edges for X ms

Check the resulting logic level to see it it was a rising or falling edge

Button Pressed Button Released

All edges ignored for 10ms All edges ignored for 10ms

Software Debouncing: All edges are ignored for 10ms once a falling edge is detected

Software Debouncing with a sleep() statement

When a falling edge is detected,

Wait 10ms for the bouncing to stop

Check if this was a falling edge

- pin value is zero

def CLK(pin1):

 global N, flag

 time.sleep(0.01)

 if(pin1.value() == 0):

 flag = 1

 N = (N+1)%6

This is a little inefficient:

A 10ms wait is a lot of clocks

A timer interrupt would be more efficient

- next lecture

Multiple Interrupts: Hungry-Hungry Hippo (Take 2):
https://youtu.be/9Owv0h8wz-I?feature=shared

Next, let's look at multiple interrupts.

Specifically,

Play Hungry-Hungry Hippo

With two players

- More could be added

With a 10 second time limit

- After 10 seconds the game is over

- Button presses after 10 seconds are ignored

Whoever has the high-score after 10

seconds wins

Hardware:

Input Buttons:

Player A: Button GP15

Player B: Button GP14

More could be added

Use an internal pull-up resistor

Falling edges = Button presses

Count falling edges

Pi-Pico

GP15

GP14

Internal Pull-Up

Internal Pull-Up

3.3V

3.3V

Player A

Player B

50-65k

50-65k

Software
Add a counter for each player

- Global variables N1 and N2

Define the input pins

- GP15 and GP14

Define the interrupt service routines

- player1

- player2

Set up the interrupts

- falling edge interupts

The main routine just displays

Display the score

Wait 100ms

Repeat for 10 seconds

Hungry-Hungry Hippo (Take 2)

from machine import Pin

from time import sleep

N1 = N2 = 0

pin1 = Pin(15, Pin.IN, Pin.PULL_UP)

pin2 = Pin(14, Pin.IN, Pin.PULL_UP)

def player1(pin1):

 global N1

 N1 = N1 + 1

def player2(pin2):

 global N2

 N2 = N2 + 1

pin1.irq(trigger=Pin.IRQ_FALLING,

handler=player1)

pin2.irq(trigger=Pin.IRQ_FALLING,

handler=player2)

Time = 0.0

while (Time < 10):

 print(Time, N1, N2)

 Time += 0.1

 sleep(0.1)

Note that the timing in this program is a little off

Each game is slightly longer than 10.00 seconds.

Due to the loop time is more than 100ms

- sleep(0.1) = 100ms

- rest of code also takes time

100ms wait
rest

of

code

100ms wait
rest

of

code

100ms wait
rest

of

code

100ms

This problem can be overcome by using timer interrupts

next lecture

Once you are able to record the number of button presses for two (or more)

players, you can vary the game with slight modifications along with the

LCD display:

Hungry-Hungry-Hippo Variations:

Keep running score on the LCD:

Update the LCD display every 100ms

Show the score for player A an dB

Show the time remaining in the game

Tug of War:

Display the difference in score

When the difference exceeds a

threshold, the game is over

Reflex Game:

With edge interrupts you can record the time of an event

within a few clocks - the time it takes to trigger the interrupt

With this, you can measure your reflex time.

The game starts by pressing a button connected to pin GP15.

Once pressed, the Pico waits between three and seven seconds.

Once done waiting, the beeper turns on and that time is saved

The program then waits for you to press GP15 again

Once pressed, the time between the beeper going on and pressing GP15 is

recorded and displayed

GP15

Beeper (GP13)

3.00 - 7.00 seconds Reflex Time

button press button press

beep

Reflex Game: Press GP15 to start the game. Press GP15 as soon as you hear the beeper

Code:

By using interrupts

It's harder to cheat

- can't just hold down the button

Timing is more accurate

- time is measured to 1us

- time.ticks_us()

Global variables are used

tells the main routine the

button was pressed

tells the main routine when

the button was pressed

Results:
Reflex Time(us) = 274368

Reflex Time(us) = 162795

Reflex Time(us) = 141069

from machine import Pin

from time import sleep, ticks_us

from random import random

beeper = Pin(13, Pin.OUT)

pin1 = Pin(15,Pin.IN,Pin.PULL_UP)

T0 = T1 = flag = 0

def B15(pin1):

 global T1, flag

 T1 = ticks_us()

 flag = 1

pin1.irq(trigger=Pin.IRQ_FALLING, handler=B15)

while(1):

 beeper.value(0)

 flag = 0

 while(flag == 0):

 pass

 print('Starting: 3..7 seconds later')

 dT = random() * 4 + 3

 time.sleep(dT)

 flag = 0

 beeper.value(1)

 T0 = ticks_us()

 while(flag == 0):

 pass

 beeper.value(0)

 Reflex = T1 - T0

 print('Reflex Time(us) = ',T1-T0)

Optical Encoders & Pong Game

Finally, one of the more useful things you can do with edge interrupts is

read an optical encoder - also known as a digital potentiometer.

Analog Potentiometers:

A long strand of resistance wire

With a center tap

Angle can be read

Connect ends to 0V and 3.3V

Wiper voltage is proportional to angle

- 0V to 3.3V analog

Digital Potentiometers:

Output is a square wave

Two channels (A and B)

90 degrees apart

- phase quadrature

What this does...

You can measure speed

- count pulses per second

You can measure angle

- count pulses

- usually using interrupts

ChA

ChB

A B+5 gnd

Counting Edges on Channel A

200 pulses per rotation

400 edges per rotation

Note:

The interrupt counts both rising and

falling edges

from machine import Pin

import time

N = 0

pin1 = Pin(15,Pin.IN,Pin.PULL_UP)

pin2 = Pin(14,Pin.IN,Pin.PULL_UP)

def ChA(pin1):

 global N

 if(pin1.value() == pin2.value()):

 N -= 1

 else:

 N += 1

pin1.irq(trigger=Pin.IRQ_FALLING |

Pin.IRQ_RISING, handler=ChA)

while (1):

 print(N)

 time.sleep_ms(100)

Counting edges on A and B

Count

- Rising and falling edges on A

- Rising and fallign edges on B

Result is 800 counts per rotation

Note:

Counting is done in the background

- using interrupts

The main loop just sees N

'magically' changing

With this, you can use an optical

encoder as the input to a game

from machine import Pin

import time

N = 0

pin1 = Pin(15,Pin.IN,Pin.PULL_UP)

pin2 = Pin(14,Pin.IN,Pin.PULL_UP)

def ChA(pin1):

 global N

 if(pin1.value() == pin2.value()):

 N -= 1

 else:

 N += 1

def ChB(pin2):

 global N

 if(pin1.value() == pin2.value()):

 N += 1

 else:

 N -= 1

pin1.irq(trigger=Pin.IRQ_FALLING |

Pin.IRQ_RISING, handler=ChA)

pin2.irq(trigger=Pin.IRQ_FALLING |

Pin.IRQ_RISING, handler=ChB)

while (1):

 print(N)

 time.sleep_ms(100)

Python routine for counting edges on both channel A and B

Pong Game

Example of using an optical encoder

Encoder moves a paddle up

and down

A ball is bouncing around the

display

If the ball hits an edge, it

reflects

If the ball hits the paddle, it

bounces right and stays in

play

The game is over if the ball

hits the left edge

Sort of like playing one-person ping-pong.

Player moves

up adn down

Program Description:

Optical Encoder Input:

Same code as before

Paddle Display

Draw a 320x2 rectangle on the left

side of the display

Paddle is white

- other pixels are black

- location y-20 to y+20

Don't allow the paddle to go off

screen

- limit y to the range of (11, 309)

def Paddle(x, y):

 x = int(x)

 y = int(y)

 if(y < 11):

 y = 11

 if(y > 309):

 y = 309

 LCD.Address_Set(x, 0, x+1, 319)

 X = bytearray([])

 for i in range(0,638):

 X.append(0)

 for i in range(2*y-20,2*y+20):

 X[i] = 0xFF;

 LCD.StartWrite()

 LCD.Write16xN(X)

 LCD.EndWrite()

Bouncing Ball

Update the (x,y) position of the ball

integrate velocity

uses Euler integration

If you hit an edge, reflect

Px > 200 (right edge)

Py < 0 (top edge)

Py > 319 (bottom edge)

Px < 3 (paddle)

Px < 0

- game over

- you missed the paddle

Score goes up every time you hit the

paddle

while(1):

 a1 = a2d1.read_u16()

 y = 320-k*a1

 Paddle(3,y)

 LCD.Pixel2(Px, Py, Navy)

 Px += Vx*dt

 Py += Vy*dt

 if(Px > 200):

 Vx = -abs(Vx)

 Beep()

 if(Py < 0):

 Vy = abs(Vy)

 Beep()

 if(Py > 319):

 Vy = -abs(Vy)

 Beep()

 if(Px < 3):

 if(abs(y - Py) < 10):

 Vx = abs(Vx)

 Vy += y - Py

 Score += 1

 LCD.Number2(Score, 4, 0,

300, 100, White, Navy)

 Beep()

Summary

Edge interrupts are kind of confusing but useful

With edge interrupts, you can

Call a subroutine only when needed

- when an edge was detected

Keep track of the number of edges more accurately

Count edges much faster (and more efficiently) than with polling

Using edge interrupts also simplifies code

You don't have to check for the current and previous state of an input

But...

You almost have to use global variables to pass data to and from the interrupt

Hardware calls the interrupt, not you

References
Pi-Pico and MicroPython

https://github.com/geeekpi/pico_breakboard_kit

https://micropython.org/download/RPI_PICO/

https://learn.pimoroni.com/article/getting-started-with-pico

https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

https://docs.micropython.org/en/latest/library/index.html

https://www.fredscave.com/02-about.html

Pi-Pico Breadboard Kit

https://wiki.52pi.com/index.php?title=EP-0172

Other

https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/

https://electrocredible.com/raspberry-pi-pico-external-interrupts-button-micropython/

https://peppe8o.com/adding-external-modules-to-micropython-with-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-esp32-esp8266-micropython/

