
Speed Control of a DC Servo Motor

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #18

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction:

Once you have edge interrupts and timer interrupts, you are able to control

the speed and angle of a DC servo motor. In this lecture, we'll look at

Modeling a DC servo motor

Measuring a motor's speed using an optical encoder

Modeling a DC servo motor, and

Controlling the speed of a DC servo motor using P and PI compensators (more

on this later)

The motor used in this lecture is a Clifton 000-053479-002 DC Servo Motor

- but the material herein applies to pretty much any DC motor.

Theoretical Modeling a DC Servo Motor

Typically, a DC servo motor has permanent magnets attached to its frame.

The armature then contains several electromagnets connected to external

wires through a commutator.

Typical DC Servo motor construction

Model for a DC Motor

Motors and geneators are one and the same. model reflects this:

The left side models the electrical side of the motor

- The resistance and inductance corresponding to the electromagnetics in the armature

The right side models the mechanical side of the motor

- Torque spinning a mechanical system with inertia and friction

Coupling these together are a motor / generator pair

As you apply current to the motor, it produces torque: T = ktIa

As you spin the motor, it produces voltage: E = ktω

+

-

Q

Js 2 Ds

KtIa

Kt*dQ/dt

LasRa

Va

Ia

The resulting equations for a DC servo motor are then

Va = (Las + Ra)Ia + ktω

ktIa = (Js + D)ω

where

(La, Ra) are the inductance and resistance of the armature

(J, D) are the inertial and friction associated with the armature,

w is the motor's speed,

kt is the motor's torque constant, and

(Va, Ia) are the voltage and current at the armature

Solving for speed as a function of voltage, you get the transfer function

ω = 


kt

(Js+D)(Ls+R)+kt
2


Va

If L = 0 (usually a good assumption)

ω ≈ 


kt

(Js+D)R+kt
2


Va

meaning the motor behaves as a 1st-order dynamic system.

Finding the Transfer Function for a DC Motor

The transfer function for a DC motor has five parameters:

Ra, La: Armature resistance and inductance

J, D: Rotor inertia and friction

Kt: Torque constant

One way to find this transfer function is to plug in the parameters

Some of these are easy to measure.

- Ra and La can be measured with an RLC meter

- Ra = 26.5 Ohms, La = 12.689mH

Meauring the torque constant:

Apply a voltage and let the motor spin freely.

Measure the voltage, current, and resulting speed.

Fom this, you can compute the torque constant

Vin = RaIa + ktω

13.54V = 26.5Ω ⋅ 97.7mA + k t ⋅ 102.5rad
sec

kt = 0.1067 Vs

rad
= 0.1068Nm

A

Kt w

La sRa

Vin

25.6 12.689mH

w = 32.00 rad/sec

5.00V

74.7mA

13.54V

97.7mA

102.5 rad/sec

Measuring Friction

Measure the no-load speed and current draw.

Do an energy balance.

On the electrical side, power in is equal to volts times amps.

On the mechanical side, power out is equal to torque time speed

Conservation of energy requires these be the same

Pin = Pout

Va ⋅ Ia = Ia
2Ra + T ⋅ ω

The no-load torque in this case corresponds to the friction in the motor

Va ⋅ Ia = Ia
2Ra + (Dω) ⋅ ω

Plugging in numbers:

13.54V ⋅ 97.7mA = (97.7mA)2 ⋅ 26.5Ω + D ⋅ 102.5rad
sec



2

D = 0.0001018 Nm

rad/ sec

Measuring the rotor's inertia

Finally, the motor's rotational inertia (J) can be estimated as a flywheel

91mm dia x 2.5mm thick flywheel, solid iron

 m = 
7.847

gm

cc



π ⋅ (4.55cm)2

 (0.25cm) = 127.5gm = 0.1275kg

J = 1

2
mr2 = 1

2
(0.1275kg)(0.0455m)2 = 0.000132 kg m3

Putting it all together, a model for the DC motor is:

 ω = 


kt

(Js+D)(Ls+R)+kt
2


Va

ω = 


65,658

(s+4.032)(s+2084)

Va

Note: This model has a fast pole

(s + 2084)

The electrical time constant

and a slow pole

(s + 4.032)

The mechanical time constant

If you ignore the fast pole you get a simpler model

L = 0 (assume)

ω = 


35.51

s+4.032





2084

s+2084

Va

ω ≈ 


35.51

s+4.032

Va

Translation: the step response should be

A 1st-order system with

A DC gain of 7.81, and

A time constant of 248ms (transient decays as exp(-4.032t)

In Matlab, this can be found using

>> G = zpk([],-4.032,35.51);

>> t = [0:0.01:1]';

>> w = step(G,t);

>> plot(t,w*10)

We can verify this by measuring the

step response of the actual DC servo

motor.

To do this, however, we first need to

be able to measure the motor's speed.

For this, optical encoders are useful.

0 200 400 600 800 1000
0

5

10

15

20

25

30

Time (ms)

Speed (rad/sec)

Optical Encoders

Optical encoders output

Two square waves

90 degrees apart

- phase quadrature

When attached to a motor, they allow you to

measure the motor's

Angle: Count the number of pulses

Speed: Measure pulses per second

With the motor used in this lecture, the

encoder has

250 pulses per rotation, or

1000 counts per rotation

if you count both rising and falling edges.

ChA

ChB

A B+5 gnd

Example: Measure the motor's angle

Count rising edges on channel A (250 pulses per rotation)

Display the counts (angle) on the console

from machine import Pin

from time import sleep

pin1 = Pin(26,Pin.IN,Pin.PULL_UP)

pin2 = Pin(27,Pin.IN,Pin.PULL_UP)

N1 = 0

def ChanA(pin1):

 global pin2

 global N1

 if(pin2.value() == 1)):

 N1 += 1

 else:

 N1 -= 1

pin1.irq(trigger=Pin.Pin.IRQ_RISING, handler=ChanA)

while(1)

 print(N1)

 sleep(0.1)

Python code for reading the optical encoders to measure the motor's angle

Example: Measure the motor's speed

Sample every 50ms (20Hz).

Speed is then

rad = 


2π

250

 ⋅ N1

rad
sec = rad

0.05
= (0.16π) ⋅ δN1

where is the number of counts in the last 50ms (20Hz). In codeδN1

N1 = N2 = N12 = 0

def tick(timer):

 global N1, N2, N12

 X = N1

 N12 = N1 - N2

 N2 = X

tim = Timer()

tim.init(freq=20, mode=Timer.PERIODIC,

callback=tick)

while(1)

 Speed = 0.16*pi*N12

 print(Speed)

 sleep(0.1)

Experimental Modeling of a DC Motor

Once you can measure the speed of the motor, the step response can be

recorded. To drive the motor, an H-bridge is used:

+15V

0V

+5V

IN01

IN02

M+

M-GP18

GP19

GP26

GP27

Pi-Pico
H-Bridge

Optical Encoder

0V

3.3V

Channel A

Channel B

M

GP18 and GP19 serve as the direction control:

GP18=1, GP19=0: 100% forward (+13.4V applied to the motor)

GP18=0, GP19=1: 100% reverse (-13.4V applied to the motor)

Note:

The actual votlage to the motor is slightly less than +15V

The H-bridge has a small volage drop across it's elements (1.6V apparently)

The steady-state relationship between speed and voltage can be found by

Stepping the input voltage from 0V to 13.4V (0% to 100% PWM),

Waiting for the speed to settle out (steady state), and

Recording the resulting speed for each voltage.

kv = 65535 / 13.4 # conversion from Volts to PWM

kw = 0.16*pi # conversion from counts to rad/sec

V = 0

while(V < 13.4):

 fwd.duty_u16(int(V*kv))

 rev.duty_u16(0)

 sleep(0.5)

 Speed = N12*kw

 print('{: 7.4f}'.format(V), '{: 7.4f}'.format(Speed), N12)

 V += 0.1

print('Stop')

fwd.duty_u16(0)

rev.duty_u16(0)

Python code for applying a constant voltage to the motor and measuring the resulting speed

The resulting speed vs. voltage is shown below:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

100

Volts

Speed (rad/sec)

slope = 0.124 Vs/rad

No-Load Speed vs. input voltage

What this shows is

At low speeds, static friction prevents the motor from spinning. It takes at least

1V (ish) to overcome static friction.

Past 2V, the motor's speed is pretty much proportional to voltage

The slope is essentially the torque constant, kt (minus losses

A step response of the motor can be found by applying a step input to the

voltage. Measuring the response to a 10V step input results in the following

graph:

-1 -0.5 0 0.5 1 1.5 2
0

20

40

60

80

Time (seconds)

Speed (rad/sec)

Motor

Matlab Model

Response to a 10V step input at t=0 (blue) and 1st-order model (red)

Using trial an error, a 1st-order response to match the data was found using

Matlab (shown in red) with the final approximate model being

>> t = [0:0.01:2]';

>> y = 78.6*(1 - exp(-5*t));

>> plot(t,y)

This implies the transfer function of the motor is

ω ≈ 


39.3

s+5

V

which comes from

The DC gain of the motor is 78.6 / 10 (10V input), and

The pole is at s = -5

This is actually fairly close to the theoretical transfer function

def tick(timer):

 global N1, N2, N12, flag

 X = N1

 N12 = N1 - N2

 N2 = X

 flag = 1

tim = Timer()

tim.init(freq=20, mode=Timer.PERIODIC, callback=tick)

t = -1

dt = 1/20

kv = 65535 / 13.4 # convert volts to pwm

kw = 0.16*pi # convert counts to rad/sec

fwd.duty_u16(0)

rev.duty_u16(0)

while(t < 2):

 while(flag == 0):

 pass

 flag = 0

 if(t < 0):

 V = 0

 else:

 V = 10

 fwd.duty_u16(int(V*kv))

 rev.duty_u16(0)

 Speed = N12*kw

 print('{: 7.2f}'.format(t),'{: 7.4f}'.format(Speed))

 t += dt

Python code for finding the step response of the motor.

Feedback Control

Typically, in order to control the speed of a motor, feedback is used. This

allows you to specify the desired speed (Ref) with the feedback system

automatically figuring out what voltage you need to apply to maintain speed

(termed automatic control).

The transfer function from the input (Ref) to the speed (w) is then

ω = GKe

e = Ref − ω

or after simplifying

ω = 


GK

1+GK

Ref

Ref
K(s)

V
G(s)

w

motorCompensator

e

PID Control

K(s) can take on several forms.

One common type of controller is called

a PID controller.

K(s) = P + I
s + Ds

I: The I term adds integration to the

control law. The integrator's job is to

search for the constant needed to hold the output at a desired speed..

P: The P term helps to speed up the motor by canceling a pole which slows the

system down.

D: The D term allows you to cancel a second pole, speeding up the system even

more.

Here, we'll look at implementing an I and a PI conroller.

Ref
K(s)

V
G(s)

w

motorCompensator

e

I Control: K(s) = k/s

First, assume K(s) is of the form

K(s) = 


I
s

 = 


k
s



Substituting:

ω = 


GK

1+GK

R

ω =








39.5

s+5





k
s



1+
39.5

s+5





k
s






R

ω = 


39.5k

s(s+5)+39.5k

R

Note that the DC gain is always 1.000. This is a property of using in

integrator in the control law (the integrator searches to find the constant

which forces the error to zero. Once found, the integrator stops searching

and outputs a constant V (the integration constant.)

Ref
K(s)

V
G(s)

w

motorCompensator

e

k determines where the roots of the closed-loop system are:

s(s + 5) + 39.5k = 0

If you want repeated poles at s = -2.5, then

(s(s + 5) + 39.5k)s=−2.5 = 0

k = 


2.52

39.5

 = 0.158

The closed-loop system is then

K(s) = 


0.158
s



ω = 


6.25

s2+5s+6.25


R = 


2.5

s+2.5



2

R

-6 -5 -4 -3 -2 -1 0 1
-j

0

j

j2

j3

j4

j5

j6

roots of s(s+5) + 39.5k = 0

k = 0.158

The step response of this motor is shown below. Note:

The actual speed locks onto the desired speed (due to the integrator)

It takes about 2.0 seconds to lock onto this speed

The timer interrupt is used to set the loop time to 50ms (20Hz).

0 2 4 6 8 10
0

20

40

60

80

Time (seconds)

Speed (rad/sec)

The 2.00 seconds is due to the closed-loop poles being at {-2.5, -2.5}. With

repeated poles at s = -2.5, the transient should decay as

e(t) = te−2.5t

Picking a small number, such as 2%, to find the theoretical settling time and

you get

0.02 = te−2.5t

t = 1.798

or about two seconds as found experimentally.

I t =

dt =

kv =

kw =

fwd.d

rev.d

while

 w

 f

 R

 S
0 2 4 6 8 10

0

20

40

60

80

Time (seconds)

Speed (rad/sec)

PI Control

With I control, if the gain, k, is increases, the poles shift as:

s(s + 5) + 39.5k = 0

The pole at s=0 is good:

- This is an integrator which searches to find the voltage needed

The pole at s=-5 is bad

- It limits the speed of the system to s = -2.5 + jX

What PI compensators, you can cancel the pole at s = -5

K(s) = P + I
s

Doing some algebra

K(s) = 


Ps+I
s



K(s) = P
s+I/P

s

 = 


k(s+a)

s



With a PI compensator, you can add a

zero to cancel a pole.

Choosing I/P = 5 to cancel the pole at s =

-5

The open-loop system becomes

GK = 


k(s+a)
s





39.5

s+5



GK = 


k(s+5)
s





39.5

s+5



GK = 


39.5k
s



and the closed-loop system being

ω = 


GK

1+GK

R =









39.5k
s



1+
39.5k

s






R

ω = 


39.5k

s+39.5k

R

Ref
K(s)

V
G(s)

w

motorCompensator

e

Note here that

The DC gain is always 1.000. This results from using an integrator in K(s)

The closed-loop pole is at s = -39.5k

If you want to place the closed-loop pole

at s = -10

39.5k = 10

k = 0.253

or

K(s) = 0.253
s+5

s



resulting in the closed-loop system being

ω = 


GK

1+GK

R = 


10

s+10

R

Ref
K(s)

V
G(s)

w

motorCompensator

e

The step response for a PI controller is shown below. Note

The actual speed (blue) tracks the desired speed (red)

Tracking happens after about 0.5 seconds (about)

This is what you expect with a closed-loop pole at s = -10

0 2 4 6 8 10
0

20

40

60

80

Time (seconds)

Speed (rad/sec)

t = V = I = 0

dt = 1/20

kv = 65535 / 13.4 # convert volts to pwm

kw = 0.16*pi # convert counts to rad/sec

fwd.duty_u16(0)

rev.duty_u16(0)

while(t < 10):

 while(flag == 0):

 pass

 flag = 0

 Ref = floor(t/5) * 40 + 40

 Speed = kw * N12

 E = Ref - Speed

 I += E*dt

 V = 0.254*E + 1.272*I

 if(V > 0):

 fwd.duty_u16(int(V*kv))

 rev.duty_u16(0)

 else:

 fwd.duty_u16(0)

 rev.duty_u16(int(-V*kv))

 print(t,Ref,Speed)

 t += dt

print('Stop')

fwd.duty_u16(0)

rev.duty_u16(0)

PI Control via Interrupts

In the above code,

A timer interrupt is used to set the sampling rate to 50ms (20Hz).

The interrupt then uses a flag to tell the main routine when 50ms has elapsed

Then the next iteration begins

This isn't completely necessary.

The timer interrupt is already being executed every 50ms

It would not take much coding to add the PI compensator to the timer interrupt

routine

By doing so, the main routine is completely free to do whatever you want:

the calculations for the motor controller are then done in the background

inside the timer interrupt routine.

In-Rush Current and Start-Up Sequence

One problem with an I and PI controller is called in-rush current. The

current to a DC motor is:

Va = IaRa + LasIa + ktω

Ia = 


Va−ktω

Ra+Las



If you stall a DC motor (w = 0),

The motor no longer generates any back-emf

The current is only limited by the armature resistance

This can burn out the motor

In-rush current is the large current you see on startup

The motor hasn't started spinning yet

The back-emf is small or zero

The current is large

This large current on startup can burn out the motor

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

1

2

3

4

5

6

7

8

9

10

Time

Current

Speed

In-Rush Current

For small motors like the ones used in this lecture, the in-rush current isn't

that large:

max(Ia) = 13.4V

26.5Ω
= 505mA

For larger motor, such as an Allen Bradley CDP3353 1/2 hp DC servo

motor, the in-rush current is

max(Ia) = 


90V

0.664Ω

 = 135.5A

This is well above the maximum rated armature current of 5A. If you apply

90V to this motor right away, you'll probably burn out the armature

windings.

To limit the current on start-up, several options are available:

Add a slew-rate limit to the set point (turn a step input into a ramp input, allow

the motor a chance to get up to speed before you hit it with 90V)

Remove the load and add a resistor in series with the armature on startup. Once

the motor gets up to speed, then remove the resistor and then add a load.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

Time

Set-Point

Slew-Rate Limited Set Point

To reduce the in-rush current, a slew-rate limit can be added to the set-point (R)

Summary

Once you have edge interrupts and timer interrupts, measuring and

controlling the speed of a DC servo motor isn't that hard:

PWM signals along with an H-bridge allow you to drive the motor from 0% to

100% in both directions.

Edge interrupts along with an optical encoder allow you to measure the motor's

speed as pulses per second.

Timer interrupts let you set the sampling rate - needed for numerical integration,

and

I and PI compensators can then be implemented by using just a couple

multiplication and additions.

This results in a motor which can track a constant set point dead on, or a

time varying signal fairly well (as long as the set point doesn't change faster

than the closed-loop system's bandwidth).

References
Pi-Pico and MicroPython

https://github.com/geeekpi/pico_breakboard_kit

https://micropython.org/download/RPI_PICO/

https://learn.pimoroni.com/article/getting-started-with-pico

https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

https://docs.micropython.org/en/latest/library/index.html

https://www.fredscave.com/02-about.html

Pi-Pico Breadboard Kit

https://wiki.52pi.com/index.php?title=EP-0172

Other

https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/

https://electrocredible.com/raspberry-pi-pico-external-interrupts-button-micropython/

https://peppe8o.com/adding-external-modules-to-micropython-with-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-esp32-esp8266-micropython/

