
SCI Communications & GPS

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #25

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions



Introduction:
Another sensor available for use with a Pi-Pico is a GPS sensor.

These tell you your

Latitude

Longitude

Elevation

Speed in knots, and

Heading in degrees

With a GPS sensor, you can

Locate your car

- Report distance from a reference position

Display your speed in mph

Other (up to your creativity)



SCI Communication
Serial Communications Interface

SCI is a type of asynchronous communications.

No clock

Data is sent in 8-bit packets

Start Bit

8 Data Bits

0-3 Stop Bits

Each bit is a fixed width

1/9600 second for 9600 baud

Start 7 6 5 4 3 2 1 0

idle idle
8 data bits, MSB first

1/9600 second

SCI Data:  Start bit comes first



Receiving Serial Data
When receiving serial data,

The falling edge indicates the start of a message

Sample each bit (blindly) in the middle of each bit

After eight reads, you have one byte

This really need to be done using interrupts or hardware

Timing is critical

Start 7 6 5 4 3 2 1 0

idle idle
8 data bits, MSB first

1.5T T T T T T T T

Sample

GPS Read:  Sample each bit in the middle to determine its value.



SCI Ports on a Pi-Pico
The Pi-Pico has two SCI ports available:

SCI0:  

- TX=GP0, RX=GP1, or

- TX=GP12, RX=GP13, or

- TX=GP16, RX=GP17

SCI1

- TX=GP4, RX=GP5, or

- TX=GP8, RX=GP9

Your pick which port and pins you use

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0/TX0

GP1/RX0

GND

GP2

GP3

GP4/TX1

GP5/RX1

GND

GP6

GP7

GP8/TX1

GP9/RX1

GND

GP10

GP11

GP12/TX0

GP13/RX0

GND

GP14

GP15

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28

GND

GP27

GP26

RUN

GP22

GND

GP21

GP20

GP19

GP18

GND

GP17/RX0

GP16/TX0



The procedure to initialize a SCI port is

from machine import UART

uart = UART(0, 9600)

uart.init(9600, bits=8, parity=None, stop=1, tx=0, rx=1)

Different ways to read and write to a UART are:

uart.read(5)           # read 5 characters into a buffer

uart.read()            # read all available characters

uart.readline()        # read a line (stop at carriage return)

uart.readinto(buf)     # read and store in a buffer

uart.write('Hello')    # write to the SCI port



GPS Modules & Messages

GPS sensors use satellites to tell you
your location.

They're actually really easy to use: 

Connect power and ground

Connect the serial out (TX) to the serial
in (RX) on the Pi-Pico

Receive serial data at 9600 baud
(default).



Hardware:  
Up to two GPS sensors can be read

SCI0

SCI1

Only one wire is needed if you stick
with 9600 baud

GP1/RX

GP9/RX

SCI0

SCI1

GPS

GPS

Pi-Pico

3.3V

3.3V

ant

ant



Reading GPS Messages
Initialize the serial port to 9600 baud

Read each message

from machine import UART

from time import sleep

uart = UART(1, 9600)

uart.init(9600, bits=8, parity=None, stop=1, tx=8, rx=9)

while(1):

    x = uart.readline()

    sleep(0.2)

shell
b'$GPGGA,205246.00,4649.55240,N,09652.11367,W,1,07,1.17,283.7,M,-27.5,M,,*69\r\n'

b'$GPGSA,A,3,23,18,10,27,15,32,24,,,,,,3.59,1.17,3.39*0C\r\n'

b'$GPGSV,2,1,08,08,19,311,09,10,52,288,24,15,28,055,21,18,47,147,25*78\r\n'

b'$GPGSV,2,2,08,23,77,015,19,24,39,100,21,27,32,277,1

b'$GPRMC,205247.00,A,4649.55258,N,09652.11395,W,0.306,,140724,,,A*62\r\n'

b'$GPVTG,,T,,M,0.306,N,0.567,K,A*22\r\n'

b'$GPGGA,205247.00,4649.55258,N,09652.11395,W,1,07,1.14,284.1,M,-27.5,M,,*6E\r\n'

b'$GPGSA,A,3,23,18,10,27,15,32,24,,,,,,2.49,1.14,2.22*04\r\n'

b'$GPGSV,2,1,08,08,19,311,08,10,52,288,25,15,28,055,22,18,47,147,26*78\r\n'

b'$GPGSV,2,2,08,23,77,015,19,24,39,100,21,27,32,277,1

b'$GPRMC,205248.00,A,4649.55297,N,09652.11403,W,0.312,,140724,,,A*63\r\n'

b'$GPVTG,,T,,M,0.312,N,0.578,K,A*29\r\n'

b'$GPGGA,205248.00,4649.55297,N,09652.11403,W,1,07,1.14,284.5,M,-27.5,M,,*6E\r\n'

b'$GPGSA,A,3,23,18,10,27,15,32,24,,,,,,2.49,1.14,2.22*04\r\n' 



GPS Message: $GPGGA
$GPGGA,205246.00,4649.55240,N,09652.11367,W,1,07,1.17,283.7,M,-27.5,
M,,*69

UTC time (hhmmss.sss).  

- Data was recorded at 20:42:46.00 seconds GMT

Latitude (ddmm.mmmm).  

- 46 degrees, 49.55240 minutes north

Longitude (ddmm.mmmm)  

- 096 degrees 42.11367 minutes west

Fix

- 0: Fix not available or invalid

- 1: GPS SPS mode, fixed valid

- 2: Differential GPS, SPS mode, fix valid

Satellites used (07, 1.17)

Altitude (283.7 meters)



$GPGSA,A,3,23,18,10,27,15,32,24,,,,,,3.59,1.17,3.39*0C

Satellites used in the position solution

{3, 23, 18, 10, 27, 15, 32, 24}

$GPGSV,2,1,08,08,19,311,09,10,52,288,24,15,28,055,21,18,47,147,25*78

The number of satellites in view

$GPRMC,205247.00,A,4649.55258,N,09652.11395,W,0.306,,140724,,,A*
62

Time, Data, Position, Course, and Speed

A = valid data, V = invalid data

Time (hhmmss.ss). Current time is 20:52:47.00

Latitude (ddmm.mmmm).  Location is 46 deg 49.55258 minutes north

Longitude (ddmm.mmmm)  Location is 096 deg 52.11395 minutes west

Speed in knots:  Speed is 0.306 knots

Direction (in degrees)



Reading in a GPS Message
The Python command uart.readline() works in theory

Seems to be inconsistent

Misses some carriage returns

Doesn't start with a $

So, write custom routines

Use bottom-up programming

b'$GPGGA,205246.00,4649.55240,N,09652.11367,W,1,07,1.17,283.7,M,-27.5,M,,*69\r\n'

b'$GPGSA,A,3,23,18,10,27,15,32,24,,,,,,3.59,1.17,3.39*0C\r\n'

b'$GPGSV,2,1,08,08,19,311,09,10,52,288,24,15,28,055,21,18,47,147,25*78\r\n'

b'$GPGSV,2,2,08,23,77,015,19,24,39,100,21,27,32,277,1

b'$GPRMC,205247.00,A,4649.55258,N,09652.11395,W,0.306,,140724,,,A*62\r\n'

b'$GPVTG,,T,,M,0.306,N,0.567,K,A*22\r\n'

b'$GPGGA,205247.00,4649.55258,N,09652.11395,W,1,07,1.14,284.1,M,-27.5,M,,*6E\r\n'

b'$GPGSA,A,3,23,18,10,27,15,32,24,,,,,,2.49,1.14,2.22*04\r\n'

b'$GPGSV,2,1,08,08,19,311,08,10,52,288,25,15,28,055,22,18,47,147,26*78\r\n'



Level 1:

GPS_Read_Line(chan): 

Supports two GPS units

SCI0 & SCI1

Read from the serial port

Go character by character

$ indicated start of message

Carriage return (13) indicates end
of message

Return a string of everything
in-between

Use a flag

Keep reading until you see a
carriage return

def GPS_Read_Line(chan):

    flag = 0

    n = 0

    msg = ''

    while(flag == 0):

        if(chan == 0):

            x = uart0.read(1)
        else:

            x = uart1.read(1)

        if(x != None):

            x = ord(x)

            if(chr(x) == '$'):

                msg = ''

            if(x == 13):

                flag = 1

            else:

                msg = msg + chr(x)

    return(msg)



Test Code:

Check that GPS_Read_Line(chan) works

while(1):

    msg = GPS_Read_Line(0)

    print(msg)

shell

$GPVTG,,T,,M,0.970,N,1.797,K,A*25

$GPGGA,173924.00,4649.55763,N,09652.11931,W,1,06,1.27,288.7,M,-27.5,M,,*60

$GPGSA,A,3,29,18,15,13,20,23,,,,,,,2.52,1.27,2.18*0F

$GPGSV,4,1,16,01,21,283,17,05,55,055,07,07,02,027,,11,08,099,*7C

$GPGSV,4,2,16,13,42,105,19,15,45,156,12,16,11,324,,18,50,296,19*7F

$GPGSV,4,3,16,20,26,062,14,23,20,238,20,25,00,206,,26,16,289,*75

$GPGSV,4,4,16,29,64,190,19,30,03,056,,46,28,221,,48,30,216,*77

$GPGLL,4649.55763,N,09652.11931,W,173924.00,A,A*7F

$GPRMC,173925.00,A,4649.55729,N,09652.11947,W,1.143,,180724,,,A*67

$GPVTG,,T,,M,1.143,N,2.116,K,A*20



Level 2:  String_to_Num()

Convert fields to numbers

Without crashing if the field isn't a valid number

Fields are in fixed locations

Example: GPRMC message
x = '$GPRMC,173925.00,A,4649.55729,N,09652.11947,W,1.143,,180724,,,'

The fields can be pulled out as:

$GPRMC, 173925.00  46 49.55729 096 52.11947 1.143 

location x[7:16] x[19:21] x[21:29] x[32:35] x[35:43] x[46:51]

meaning hhmmss
GMT

latitude
degrees

latitude
minutes

longitude
degrees

longitude
minutes

speed
knots



Str2Num(x)

float(x) doesn't work

crashes program if x isn't a
valid number string

This program

Pulls out digits

Allows decimal places

Doesn't crash if field is wrong

- just sets Error_Flag

def Str2Num(X):

    global Error_Flag
    n = len(X)

    y = 0

    flag = 0

    k = 0

    for i in range(0,n):

        z = X[i]

        if(z in {'0','1','2','3',...):

            if(z == '.'):

                flag = 1

            else:

                if(flag == 0):

                    y = 10*y + int(z)
                else:

                    k -= 1

                    y += int(z)*(10**k)

        else:

            Error_Flag = 1

    return(y)



Testing Str2Num
For a valid number:

Error_Flag = 0

msg = '123.456'

print(Str2Num(msg), Error_Flag)

shell

123.456   0

For an invalid number:

Error_Flag = 0

msg = '1G3.456'

print(Str2Num(msg), Error_Flag)

shell

13.456   1

    



Level 3:  GPS_Read(chan)

Read in a GPS message

Keep reading until GPRMC is found

character 3 is 'R'

Message length > 52

Pull out each field

time

Latitude

- degrees

- minutes

Longitude

- degrees

- minutes

Speed

Return reading

varies in following programs

def GPS_Read(chan):

  flag = 0

    

  while(flag == 0):

    x = GPS_Read_Line(chan)

    if(len(x) > 52):

      if(x[3] == 'R'): # $GPRMC
        flag = 1   

        time = Str2Num(x[7:16])

        LatD = Str2Num(x[19:21])

        LatM = Str2Num(x[21:29])

        LonD = Str2Num(x[32:35])

        LonM = Str2Num(x[35:43])

        speed = Str2Num(x[46:51])

  

  return([time, LatD, LatM, LonD,

LonM, speed])



Test Routine

Read the GPS over and over

Display time, latititude, longitude, and speed

- Time increments by one (no messages are missed)

- Latitude and longitude is Fargo, ND (correct)

- Speed is zero-ish

Everything looks good

while(1):

    [t, xd, xm, yd, ymv] = GPS_Read(0)

    msg0 = str('{:7.0f}'.format(t) + ' ')

    msg1 = str('{:11.7f}'.format(xd+xm/60) + ' ')

    msg2 = str('{:11.7f}'.format(yd+ym/60) + ' ')
    msg3 = str('{:9.4f}'.format(v) + ' ')

    print(msg0 + msg1 + msg2 + msg3)

shell

183300  46.8258247  96.8686447    0.1620
183301  46.8258247  96.8686447    0.1150

183302  46.8258286  96.8686447    0.0290

183303  46.8258286  96.8686447    0.0490



Where's My Car?
Video: Where's my cat?

Level 4:  Main Routine

a fairly long routine

Full code posted on Bison Academy

Displays

Current GPS Location

Distance to marked location

GP15: Mark Current Location

Use current location as (0,0) position

GP14: Record Data

Toggle recording on/off

beep: recording & file append

beep-beep: recording turned off & file
closed



Data File:
The data file contains six columns of number

Latitude in degrees & minutes

Longitude in  degrees & minutes

Distance north of your home position in meters

Distance west of your home position in meters

 
Latutude        Longitude     North   West

deg min        deg min        (m)     (m)

46 49.5489616  49 52.1171951  0.6142  0.4879

46 49.5489616  49 52.1171951  0.6142  0.4879
46 49.5490990  49 52.1174164  0.8684  0.7680

46 49.5489388  49 52.1175575  0.5719  0.9468

Text file for Wheres_My_Car.py.  GPS position and distance to home position in meters



Unit Conversions
Longitude (E/W): 

The Earth's equatorial circumference is 40,075km (space.com).

 At the equator, each degree is 111.317km

10 =
40,075km

360
= 111.319km

Each minute is 1855.285m

1 =
40,075km

60⋅360
= 1, 855.324m

Scale by your latitude (assume 46.8258 degrees north)

1 = 


40,075km

60⋅360

 ⋅ cos (46.82580) = 1, 269.448m

So, in Fargo, one minute of longitude corresponds to 1269.448 meters
east/west.



Unit Conversions
Latitude:

The Earth's polar circumference is 40,008km (space.com).

Each degree of latitude corresponds to

10 =
40,008km

360
= 111.133km

Each minute of latitude corresponds to 1852.222 meters

1 =
40,008km

60⋅360
= 1852.222m

With these conversions,

If you know your distance from home in minutes

You know your distance in meters



Noise on GPS Signals
The GPS readings drift

Atmospheric disturbances

Calculation errors in GPS module

- Using a $5 GPS module

- More expensive ones exist

Example: GPS location over 10
minutes

Sensor is stationary

Reported position is drifting

0 100 200 300 400 500 600

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

Time (seconds)

meters

N/S

E/W



GPS Noise: Statistics
90% confidence interval

N/S = +/- 3.15 meters

E/W = +/- 4.57 meters

With this sensor, you know your
position within 5 meters (ish)

mean st dev 1.66 * st dev

N/S -1.025 m 1.897 m 3.15 m

E/W -0.436 m 2.751 m 4.57 m

0 100 200 300 400 500 600

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

Time (seconds)

meters

N/S

E/W



GPS Noise When Moving
Walk around a rectangle

shown in red

Record GPS position

shown in blue

Tracking is a little better when
moving

+/- 2 meters (?)

Hard to say without a known position

-5 0 5 10 15
0

5

10

15

20

25

30

35

40

45

East (m)

North (m)



Differential GPS
One way tpo improve GPS accuracy

Assume disturbances on GPS readings are
caused by atmospheric disturbances etc.

Assume two GPS units close to each other
will have the same drift

Taking the difference in GPS readings
should cause the disturbances to cancel

Net result is improved GPS accuracy

GPS0 GPS1

(stationary) (moving)

dP = P1 - P0



Differential GPS with a Pi-Pico
Use two GPS receivers

One of SCI0

One on SCI1

One GPS has a known position

Fixed position

The other GPS can move around

The difference in GPS readings should

have lower drift

Smaller standard deviation in readings

GP1/RX

GP9/RX

SCI0

SCI1

GPS0

GPS1

Pi-Pico

3.3V

3.3V

ant

ant



Differential GPS Code:

Read both GPS receivers

Keep reading until you get a
valid GPS signal from both

Use the difference in readings

x = x1 - x0

Sensor minus reference

while(1):

    Error_Flag = 1
    while(Error_Flag == 1):

        Error_Flag = 0

        [t0, x0, y0, v0] = GPS_Read(0)

        [t1, x1, y1, v1] = GPS_Read(1)

    x = x1 - x0

    y = y1 - y0    



Differential GPS Results
Both sensors stationary

20cm apart

N/S position (top)

E/W position (bottom)

Observations:

Not much correlation in graphs

Subtracting actually makes noise worse

- Standard deviation increases

- Supposed to decrese :(

std(S0) std(S1) std(S0-S1)

N/S 2.7507 m 1.9012 m 2.9768 m

E/W 1.8974 m 1.1917 m 1.9349 m

0 100 200 300 400 500 600
-6

-4

-2

0

2

4

6

8

Time (seconds)

North (m)

GPS0

GPS1

0 100 200 300 400 500 600
-6

-4

-2

0

2

4

Time (seconds)

West (m)

GPS1

GPS0



Correlation of GPS Readings:
Matlab Code

Calculate the correlation between
each GPS sensor

ECE 341 lecture #19

A correlation of 1.00 is good

Same noise on both signals

Noise will cancel

A correlation of 0.00 is bad

Uncorrelated noise on two sensors

Noise does not cancel

Subtracting actually increases noise

>> num = mean(x0 .* x1) -

mean(x0)*mean(x1);

>> den = std(x0) * std(x1);

>> rhox = num / den

rhox =    0.2214

>> num = mean(y0 .* y1) -

mean(y0)*mean(y1);

>> den = std(y0) * std(y1);

>> rhoy = num / den

rhoy =    0.2817

cov(x, y) = E(xy) − E(x)E(y)

ρx,y =
cov(x,y)

σxσy



Summary: Differential GPS
Correlation Coefficient

N/S:  0.2817

E/W: 0.2214

Very weak correlation

Noise on the two sensors is mostly uncorrelated

Noise does not have a common source

Differential GPS doesn't work with the GPS sensors used

- $5 GPS sensor

Probably need a more expensive GPS units for differential GPS to work



GPS Speedometer
Finally, let's use the GPS sensor to measure your speed in mph.

$GPRMC message includes speed in
knots

mph = knots ⋅ 1.15077

Display the speed in 100 x 200 font

Big numbers so the driver can see them

a

b

c

d

e

f

g

(0,0)

(100,200)



Big_Display()
Bottom-Up Programming

Lowest level

Display a single digit

0 - 9

100 pixels wide

200 pixels high

Use seven boxes for each
number

Similar to 70segment
display

White to light up

Black for dark

def Big_Display(N, x, y):

  T = 15

  c1 = LCD.RGB(250,250,250)

  c0 = 0

  if(N == 0):

    LCD.Solid_Box(x+T,y,x+100-T,y+T,c1)

    LCD.Solid_Box(x+100-T,y,x+100,y+100,c1)

    LCD.Solid_Box(x+100-T,y+100,x+100,y+200,c1)

    LCD.Solid_Box(x+T,y+200-T,x+100-T,y+200,c1)

    LCD.Solid_Box(x,y+100,x+T,y+200,c1)

    LCD.Solid_Box(x,y,x+T,y+100,c1)

    LCD.Solid_Box(x+T,y+100-T,x+100-T,y+100,0)

  if(N == 2):

    LCD.Solid_Box(x+T,y,x+100-T,y+T,c1)

    LCD.Solid_Box(x+100-T,y,x+100,y+100,c1)

    LCD.Solid_Box(x+100-T,y+100,x+100,y+200,0)

    LCD.Solid_Box(x+T,y+200-T,x+100-T,y+200,c1)

    LCD.Solid_Box(x,y+100,x+T,y+200,c1)

    LCD.Solid_Box(x,y,x+T,y+100,0)

    LCD.Solid_Box(x+T,y+100-T,x+100-T,y+100,c1)

  if(N == 3):

      :

not the most most efficient code, but works



Display(Speed)
Bottom-up programming

Level 2

Pass the speed

00.0 to 99.9

Pull out the digits

10s, 1s, 0.1's

Display each digit

Add a decimal point

def Display(Speed):

    X = int(Speed*10)
    A0 = X % 10

    X = X // 10

    A1 = X % 10

    X = X // 10

    A2 = X % 10

    Big_Display(A2, 50, 50)

    Big_Display(A1, 170, 50)

    Big_Display(A0, 300, 50)

    LCD.Solid_Box(280,235,295,250,0xFFFF)



Main Loop
Read the GPS sensor until
reading is valid

Error_Flag isn't set

Checks button GP14

Toggle recording on / off

Calculate & Display speed

mph

while(Button15.value() == 1):

  Error_Flag = 1

  while(Error_Flag == 1):

    Error_Flag = 0

    [t, x, y, v] = GPS_Read(0)

  if(Button14.value() == 0):

    Record_Flag = not Record_Flag

    if(Record_Flag):

      Beep()

      f = open(FileName, "a")

      print('Recording')

      LCD.Text('Recording',5,5,Pink,Navy)

    else:

      Beep()

      sleep(0.1)

      Beep()

      f.close()

      print('File Closed')

      LCD.Text('         ',5,5,Pink,Navy)

  while(Button14.value() == 0):

    pass

  Display(v*1.15078)

  if(Record_Flag):

    msg = str('{:9.4f}'.format(v*1.15077) + ' ' )

    f.write(msg + '\n')



Speedometer Accuracy
Need something to measure against

Use car's cruise control

Set to 40mph

Set to 50mph

Result shows noise on readings

Don't know cause

Could be GPS sensor

Could be actual speed is varying

mean
(mph)

st dev
(mph)

40 mph 39.8913 0.1977 

50 mph 50.0601 0.1954 

0 20 40 60 80 100 120 140

35

40

45

50

55

Time (seconds)

mph

Cruise Control set to 40mph

Cruise Control set to 50 mph



Summary
GPS sensors are fairly inexpensive costing as little as $5 each from Amazon.
With them you can determine where you are to within about 5 meters and
your speed to within about 0.3 mph.  Presumably, more expensive GPS
sensors will work even better.

GPS sensors communicate with the Pi-Pico using SCI protocol.  With some
coding, the GPS messages can be pulled out and the fields can be read fairly
easily.  What you do with this is up to you and your creativity.



References
Pi-Pico and MicroPython

https://github.com/geeekpi/pico_breakboard_kit

https://micropython.org/download/RPI_PICO/

https://learn.pimoroni.com/article/getting-started-with-pico

https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

https://docs.micropython.org/en/latest/library/index.html

https://www.fredscave.com/02-about.html

Pi-Pico Breadboard Kit

https://wiki.52pi.com/index.php?title=EP-0172

Other

https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/

https://electrocredible.com/raspberry-pi-pico-external-interrupts-button-micropython/

https://peppe8o.com/adding-external-modules-to-micropython-with-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-esp32-esp8266-micropython/


