
NeoPixels

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #26

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction:

NeoPixels are RGB LEDs with a single-wire interface.

aka WS2811 or WS812

Several NeoPixels can be cascaded

Connect DOUT to DIN of the next NeoPixel:

Pi-Pico

GPx DIN DOUT DIN DOUT DIN DOUT

5V 5V 5V

Wiring for NeoPixels: A single wire drives a string of LEDs

Driving a NeoPixel String

Send a series of 24 bits for each NeoPixel

Three bytes for green - red - blue

255 = full brightness (20mA)

0 is off (0mA)

Brightness (current) is proportional in-between

The first 24 bits drives the first neopixel

The next 24 bits drives the second

and so on.

An idle time of >50us indicates end of message

GRB brightness

for first NeoPixel
GRB brightness

for second NeoPixel
End of message

> 50us

Sending 1's and 0's

Within each 24 bit message, logic 1 and 0 is defined by the pulse-width:

Each bit is 1200ns

Logic 0 has a 300ns high pulse

Logic 1 has a 700ns high pulse

1200ns 1200ns 1200ns

300ns 300ns700ns 700ns

0 1 0 1 end of message

> 50us900ns 500ns 900ns 500ns

Encoding of logic 0 and 1 for NeoPixels

bitstream()

The function bitstream() in libraries machine and neopixel allows you to

output 1's and 0's on an output pin with specific timing.

The format for these commands are:

neopixel.bitstream(pin, encoding, timing, data, /)

machine.bitstream(pin, encoding, timing, data, /)

where

pin: the GPIO pin to output the data

encoding: 0 for high-low pulse duration.

- This transmits 0 and 1 bits as timed pulses starting with the most significant bit.

timing: array of four times in nanoseconds:

- (high_0, low_0, high_1, low_1)

- WS2812 at 800kHz would be (300, 900, 700, 500)

data: binary array of data to send out

Driving One NeoPixel:

Drive the NeoPixel on your board

Red

pause one second

Green

pause one second

Blue

pause one second

repeat

from machine import Pin, bitstream

from time import sleep

timing = [300, 900, 700, 500]

np = Pin(12, Pin.OUT)

red = bytearray([0,50,0])
green = bytearray([50,0,0])

blue = bytearray([0,0,50])

print(red)

while(1):

 bitstream(np, 0, timing, red)

 sleep(1)

 bitstream(np, 0, timing, green)

 sleep(1)

 bitstream(np, 0, timing, blue)

 sleep(1)

bytearray(b'\x00\x14\x00')

Result

NeoPixel changes from

Red - Green - Blue

Output red / green / blue on the NeoPixel on the 52Pi board using bitstream

Driving 12 NeoPixels

Attached to pin #12

Same as NeoPixel on 52Pi board

Set up a byte-array

3N elements (36)

Order = green / red / blue

Once set up, drive the NeoPixel

using

bitstream()

from machine import Pin, bitstream

from time import sleep

timing = [300, 900, 700, 500]

np = Pin(12, Pin.OUT)

N = 12

X = bytearray([10,20,30])

for i in range(1,N):

 X.extend(bytearray([1,2,3]))

bitstream(np, 0, timing, X)

Result

NeoPixel[0] = 10 / 20 / 30

bright light

also show up on 52Pi board

NeoPixel[1..11] = 1 / 2 /3

dim lights

Note: X is a byte-array

order is green / red / blue

for 12 LEDs

>>> print(X)

bytearray(b'\x0a\x14\x38\x01\x02\

x03\x01\x02\x03\x01\x02\x03\x01\x

02\x03\x01\x02\x03\x01\x02\x03\x0

1\x02\x03\x01\x02\x03\x01\x02\x03

\x01\x02\x03\x01\x02\x03')

Changing One LED

X is an array of 36 bytes

3 x 12

To change the color of LED N

X[3N] = green

X[3N+1] = red

X[3N+2] = blue

Example: Make LED #4 orange

X[12] = 100 # green

X[13] = 200 # red

X[14] = 0 # blue

bitstream(np, 0, timing, X)

Using the Library neopixel

There is also a neopixel library which has the function

>>> import neopixel

>>> help(neopixel)

object <module 'neopixel' from 'neopixel.pu'> is of type module

 __file__ -- neopixel.py

 __version__ -- 0.1.0

 NeoPixel -- <class 'NeoPixel'>

 bitstream -- <function>

bitstream() is the same as the function in machine()

kind of redundant

Initializing using the NeoPixel Library

Initialize an I/O pin for output to a NeoPixel as:

np = neopixel.NeoPixel(pin, n, type, timing)

where

pin = pin that's connected to the neopixel

n = number of neopixels

type = 3 for RGB LEDs, 4 for RGBW LEDs

timing = 1 for 800kHz, 0 for 400kHz (most are 800kHz)

Example: Eight RGB neopixels connected to pin #12

np = neopixel.NeoPixel(12, 8, bpp=3, timing=1)

neopixel.NeoPixel

NeoPixel contains several sub-options:

>>> import neopixel

>>> help(neopixel.NeoPixel)

object <class 'NeoPixel'> is of type type

 fill -- <function fill at 0x20012540>

 write -- <function write at 0x20012550>

 ORDER -- (1, 0, 2, 3)

fill(): make all NeoPixels the same color

write(): Update the NeoPixel (uses the bitstream command

ORDER: changes the order to red-green-blue when using the neopixel library

Note: There is an error in the NeoPixel library. The timing used is

[400, 850, 800, 450]

which works for most NeoPixel strips, but it does not work for the NeoPixel on the 52Pi

board. If you want to drive the NeoPixel on the 52 pi board, you need to use the bitstream()

command from before.

RGB Example:
Initialize a 12-element neopixel ring

Set the default color to (0,0,0)

Set the color of the first three LEDs to red -

green - blue

from machine import Pin

from neopixel import NeoPixel

p = Pin(12)

np = NeoPixel(p, 12, bpp=3, timing=1)

np.fill([0,0,0])

np[0] = (50,0,0) # red

np[1] = (0,50,0) # green
np[2] = (0,0,50) # blue

np.write()

LED Race

Turn on three LEDs

Red / Green / Blue

Rotate these around a 12-element ring

One shift every 100ms

Strategy:

Shift the elements of np[] every 100ms

Treat np[] as a shift register

- 0 goes to 1

- 1 goes to 2

- 11 goes to 0

0 1 2 3 4 5 6 7 8 9 10 11

array np[x]

(r,g,b)

0

1

2

3

4

5

6

7

8

9

10

11

Spin

LED Race: Code

Connect the ring to pin #11

Avoids 52Pi LED on pin #12

Start with all LEDs off

np.fill([0,0,0])

Set first three LEDs to r/g/b

Then

Shift the data one slot

Every 100ms

there are other ways to do this...

from machine import Pin

from neopixel import NeoPixel
from time import sleep

N = 12

p = Pin(11)

np = NeoPixel(p, N, bpp=3, timing=1)

n = 0

np.fill([0,0,0])

np[0] = (50,0,0) # red

np[1] = (0,50,0) # green

np[2] = (0,0,50) # blue

while(1):

 temp = np[11]

 for i in range(0,10):

 np[11-i] = np[10-i]

 np[0] = temp

 np.write()

 sleep(0.1)

LED Bounce:

This program makes the LED bounce back and forth between the first and

last LED.

n counts up to 11

Once n reaches 11, it counts down to zero

It then repeats over and over

All LEDs are off except for np[n] which is red:

Red LED shifts right
Once it reaches the 11th LED,

it starts to shift left

0 1 2 3 4 5 6 7 8 9 10 11

LED Bounce Code

Different approach

Use a pointer (n)

- n counts up to 11

- then counts down to 0

One count every 100ms

Element n is red

All the rest are off

from machine import Pin

from neopixel import NeoPixel
from time import sleep

N = 12

p = Pin(11)

np = NeoPixel(p,N,bpp=3,timing=1)

n = 0

dn = 1

while(1):

 if(n == 11):
 dn = -1

 if(n == 0):

 dn = +1

 n += dn

 np.fill([0,0,0])

 np[n] = (50,0,0)

 np.write()

 sleep(0.1)

Light Saber:
sound effects not included

For Star Wars fans, turn on and off a light saber:

Button GP15 turns on the light sabre

Button GP14 turns off the light sabre.

When turned on

The LEDs start lighting up from 0 to 11 every 100ms

When turned off

The LEDs start turning off from 11 to 0 every 100ms

on: LEDs light up, one every 100ms

0 1 2 3 4 5 6 7 8 9 10 11

off: LEDs turn off, one every 100ms

Light Saber Code

power_on

1 when saber is turned on

- button GP15

0 when turned off

- button GP14

np

Array of 12 tupples

Color of each LED

n

pointer

Which light is on / off

Count up when turned on

Count down when turned off

One count every 100ms

from machine import Pin

from time import sleep
from neopixel import NeoPixel

N = 12

p = Pin(11)

np = NeoPixel(p,N,bpp=3,timing=1)

p_on = Pin(15,Pin.IN,Pin.PULL_UP)

p_off = Pin(14,Pin.IN,Pin.PULL_UP)

n = 0

power_on = 0

while(1):
 if(p_on.value() == 0):

 power_on = 1

 if(p_off.value() == 0):

 power_on = 0

 if(power_on == 1):

 n = min(n+1, N)

 np[n-1] = (50,0,0)

 else:

 n = max(n-1, 0)

 np[n] = (0,0,0)

 np.write()

 time.sleep(0.1)

Summary

NeoPixels aren't too hard to use with a Raspberry Pi Pico and Python.

You can use bitstream()

Uses a binary array of 3N bytes

Order = green / red / blue

Drives the LED on the 52Pi board

Drives LED arrays

You can use the library neopixel

Uses an array of N tupples

Order = (red, green, blue)

Doesn't work on 52Pi's LED

- timing is off

Does work with LED arrays

References
https://www.hackster.io/Infineon_Team/controlling-neopisels-with-micropython

-1ca0d6

https://rancomnerdtutorials.com/micropython-ws2812b-addressable-rgb-leds-ne

opixel-esp32-3sp8266/

