
Touch Screen

ECE 476 Advanced Embedded Systems

Lecture #28

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction
The ST7796S display includes both a graphics TFT display as well as a resistive

touch input. With the touch input, you can set it up so the (x,y) coordinates of

the touch screen match up with the graphics screen:

(0,0) is the upper left corner

(479,319) is the lower right corner

Multiple touch-points are supported. In theory, interrupts can be set up for when

you touch the screen. In the following code, polling is used:

Each time you call touch.read_points(), the number of touch points is returned along

with the (x,y) coordinates of each touch point.

Topics for This Lecture
This lecture goes over using the touch-screen along with some basic program:

Displaying the (x,y) location of up to 3 touch points (base code)

Using slider bars to change the RGB color of the display

Playing draw poker, allowing you to select which cards to discard, and

Programming a numeric keypad with the touch screen

The base code comes from MicroPython Libraries

https://docs.openmv.io/library/omv.gt911.html#module-gt911

gt911.py library
In order for the following routines to work, gt911.py must be downloaded to your

Pi-Pico board. This is located on Bison Academy and comes from MicroPython

Libraries

Base Code

Initializes the touch

screen

Sets it for up to 3

touch points

If you touch the

screen

Displays (x,y)

location of each

touch point is then

displayed in the

shell window

from time import sleep_ms

from machine import Pin, I2C

from gt911 import GT911

rst_pin = Pin(10, Pin.OUT)

irq_pin = Pin(11)

sda_pin = Pin(8)

scl_pin = Pin(9)

touch = GT911(

 I2C(0, scl=scl_pin, sda=sda_pin, freq=100_000),

 rst_pin,

 irq_pin

)

touch.init(touch_points=3, refresh_rate=50)

while(1):

 num_points, points_data = touch.read_points()

 msg = ''

 for i in range(num_points):

 msg = msg + str(i) + ': (' + str(points_data[i][0])

 msg = msg + ',' + str(points_data[i][1]) + ') '

 if(num_points > 0):

 print(msg)

Sample Results

Shell Window

Up to 3 touch points are accepted

Each time you touch another point,

another column is added

The (x,y) location of each touch-point

is displayed

You get multiple reads while you are

touching the display

With this code, you can use the touch

screen as an input to the Pi-Pico

0: (263,77)

0: (263,77)

0: (263,77)

0: (263,77) 1: (92,185)

0: (263,77) 1: (92,185)

0: (263,77) 1: (91,185)

0: (263,77) 1: (473,229) 2: (92,185)

0: (263,78) 1: (473,229) 2: (92,185)

0: (264,79) 1: (468,232) 2: (94,187)

0: (265,83) 1: (455,237) 2: (112,195)

0: (269,87) 1: (447,241) 2: (135,200)

0: (272,91) 1: (434,245) 2: (150,200)

0: (427,246) 1: (157,199)

0: (413,248) 1: (168,195)

0: (409,249) 1: (171,194)

0: (405,251) 1: (176,191)

0: (404,252) 1: (181,186)

0: (404,252)

0: (142,165)

0: (142,165)

Example 1: RGB Sliders
Set the RGB level

Sliders for each color

Vary from 0 to 255

Code:

Single touch-point

X location determines value

Y location determines R / G / B

Polling used to read touch-pad

RGB Slider Code

Read (x,y) location

0 < y < 100

Red

101 < y < 200

Green

y > 200

blue

while(1):

 num_points, points_data = touch.read_points()

 if(num_points > 0):

 tx = points_data[0][0]

 ty = points_data[0][1]

 print(tx, ty)

 if(ty < 100):

 LCD.Box(50, 50, R+50, 100, Black)

 R = max(0, min(250, tx - 50))

 LCD.Box(50, 50, R+50, 100, Red)

 elif(ty < 200):

 LCD.Box(50, 150, G+50, 200, Black)

 G = max(0, min(250, tx - 50))

 LCD.Box(50, 150, G+50, 200, Green)

 else:

 LCD.Box(50, 250, B+50, 300, Black)

 B = max(0, min(250, tx - 50))

 LCD.Box(50, 250, B+50, 300, Blue)

 Color = LCD.RGB(R, G, B)

 LCD.Solid_Box(350, 50, 450, 300, Color)

Example 2: Draw Poker
Play a variation of draw poker

Start of the game:

Shuffle the deck

Draw 5 cards

Player can select which card to

discard

Tap the card

Tap again to deselect

Draw

Replace the selected cards

Draw from the top of the deck

Draw Poker Code

Start the game by shuffling the

deck

Draw 5 cards

Display the cards on the LCD

Deck = LCD.Shuffle()

Hand = [0]*5;

Value = [0]*5

Suit = [0]*5

for i in range(0,5):

 Hand[i] = Deck[i]

 Value[i] = (Hand[i] % 13) + 1

 Suit[i] = int(Hand[i] / 13) + 1

 LCD.Card(Value[i], Suit[i], 50+i*75, 50)

 LCD.Text2('Deal', 100, 200, White, Black)

 LCD.Text2('Draw', 300, 200, White, Black)

Draw = [0]*5

ptr = 5;

Selecting Cards
Tapping the screen determines action

Different fields are used

Tapping on a card selects / deselects

Tapping on Deal reshuffles the deck and

draws 5 new cards

Draw replaces selected cards with the top

cards of the deck

(0,0) (419,0)

(0,319) (419,319)

ST7796S Display

50 125 200 275 325 400
100

#0 #1 #2 #3 #4

Card Card Card Card
Card

Deal

New Hand

Draw

Replace Selected

Cards

Selecting / Deselecting Cards

Toggle Draw[card]

0: keep card

1: disard card

while(1):

 num_points, points_data = touch.read_points()

 if(num_points > 0):

 tx = points_data[0][0]

 ty = points_data[0][1]

 card = round((tx-50) / 75)

 card = max(0, min(4, card))

 if(ty < 150):

 Draw[card] = 1 - Draw[card]

Drawing Cards
Tap (250,200) to (350,250)

Discard sekected cards

Replace with the top cards of

the deck

Multiple draw steps are

allowed

#Draw

if((tx > 250)*(tx < 350)*(ty > 200)*(ty < 250)):

 for i in range(0,5):

 if(Draw[i] == 1):

 Hand[i] = Deck[ptr]

 ptr = ptr + 1

 Draw[i] = 0

 Beeper.value(1)

 sleep_ms(10)

 Beeper.value(0)

Tap (50,200) to (150,250)

Reshuffle the deck

Draw 5 new cards

Deal

if((tx > 50)*(tx < 150)*(ty > 200)*(ty < 250)):

 Deck = LCD.Shuffle()

 for i in range(0,5):

 Hand[i] = Deck[i];

 ptr = 5

 Draw = [0]*5

 for i in range(0,2):

 Beeper.value(1)

 sleep_ms(10)

 Beeper.value(0)

 sleep_ms(100)

Numeric Keypad
Create a 4x3 numeric keypad

Use it to input numbers

0 to

9999999

0-9 inputs a number

clr removes the right-most number

enter pushes numbers onto a stack

Place_Button()
Place_Button() places a button along with its label at location (bx, by). The total

size of the numeric keypad is (x,y). For example, the keypad shown above is a

6x4 keypad. Number '1' is at location (0,3)

Top left corner is (0,0)

Bottom right corner is (5,3)

def Place_Button(bx, by, x, y, Label):

 n = len(Label)

 Sx = 480//x

 Sy = 320//y

 x0 = bx*Sx

 y0 = by*Sy

 LCD.Box(x0, y0, min(479, x0 + Sx), min(319, y0 + Sy), White)

 LCD.Text2(Label, x0+Sx//2-8*n, y0+Sy//2-16, White, Black)

Draw_Keyboard()
Draws the keyboard and labels

each button.

def Draw_Keyboard(x,y):

 Sx = 480//x

 Sy = 320//y

 for i in range(0,y+1):

 LCD.Line(0,i*Sy,479,i*Sy, Grey)

 for i in range(0,x+1):

 LCD.Line(i*Sx,0,i*Sx,319, Grey)

 Place_Button(3, 0, x, y, '1')

 Place_Button(4, 0, x, y, '2')

 Place_Button(5, 0, x, y, '3')

 Place_Button(3, 1, x, y, '4')

 Place_Button(4, 1, x, y, '5')

 Place_Button(5, 1, x, y, '6')

 Place_Button(3, 2, x, y, '7')

 Place_Button(4, 2, x, y, '8')

 Place_Button(5, 2, x, y, '9')

 Place_Button(3, 3, x, y, 'clr')

 Place_Button(4, 3, x, y, '0')

 Place_Button(5, 3, x, y, 'ent')

Read_Keypad(x,y):

(x,y) keypad dimension

6x4 here

Wait for a press

num_points > 0

Wait for release

num_points == 0

Return the key location

(tx, ty)

def Read_Keypad(x, y):

 Sx = 480//x

 Sy = 320//y

 num_points, points_data = touch.read_points()

 while(num_points == 0):

 num_points, points_data = touch.read_points()

 sleep_ms(30)

 tx = points_data[0][0] // Sx

 ty = points_data[0][1] // Sy

 while(num_points > 0):

 num_points, points_data = touch.read_points()

 sleep_ms(30)

 return(tx, ty)

Main Routine
Wait for a key press

Read_Keypad

Interprit Key

0..9 = numbers

clr = delete last digit

enter = push onto stack

Display the stack

Only update if changed

while(1):

 [x, y] = Read_Keypad(6,4)

 print(x, y)

 if(y==0):

 if(x==3):

 X = 10*X + 1

 elif(x==4):

 X = 10*X + 2

 elif(x==5):

 X = 10*X + 3

 :

 :

 if(flag == 1):

 LCD.Number2(T, 9, 0, 10, 10, White, Black)

 LCD.Number2(Z, 9, 0, 10, 50, White, Black)

 LCD.Number2(Y, 9, 0, 10, 90, White, Black)

 flag = 0

 LCD.Number2(X, 9, 0, 10,130, White, Black)

Once you have a keypad, you can use this for entering numbers, building a

calculator, etc.

Summary
The touch screen is actually pretty easy to use with polling.

Each time you call touch.read_points(), the number of touch points and their

corresponding (x,y) locations is returned.

Each time you call Read_Keypad(), the program waits until you press and release on

the screen. The (x,y) location of the corresponding key is then returned.

What you do with this is kind of limited by the creativity of the programmer.

