
Position Control of a Robot with Gears

Consider the problem of controlling the tip-position of a 2-link robotic arm.
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From before, the dynamics of the robotic arm  are:
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Assume each link is driven by a DC servo motor through a gear with a 300:1 turn reduction.  Relative to the DC

motor, the robot dynamics look like a disturbance, reduced by a factor of 300:
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With this reduction of 300x, the problem of controlling the motion of a robotic arm becomes simply the problem

of controlling a DC motor with a slight disturbance.
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Equations for a Brush-Type DC Motor (DC Servo Motor)

The two are coupled by the torque constant, Kr:
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Model for a DC Servo Motor connected to a robot with a 300:1 gear reduction

From before, the dynamics for a DC servo motor are:
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300

Va = (Ls + R)Ia + K tsθm

which simplifies to
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or, assuming L = 0
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For illustration purposes, assume the DC motor is a Pittman 14207 Motor operated at 76.4DC.  (100 Watts)
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http://www.pittman-motors.com/Brush-DC-Motors.aspx

This motor has a maximum torque of 0.353Nm.  With a 300:1 gear reduction, it can output 105Nm.  The

maximum load for the robotic arm is when the arms are outstretched, at which point the torque is

T = 1kg * 1m  +  1kg * 2m  = 3Nm

So, this motor along with the gear is capable of holding the robotic arm straight out with a safety margin of 35.1.

The motor looks like a reasonable choice.

From the table, the dynamics are:

Kt = 0.226 Nm/A

L = 8.93mH

J = 4.73E-5 kg m2

R = 5.78 Ohms

D = unknown

No-Load Speed = 3140 rpm @ 0.090 A

You can compute the resistance through a power balance

 P in = 76.4V ⋅ 90mA = 6.88W
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The electrical losses are

PR = Ia
2R = (90mA)

2
⋅ 5.78Ω = 46.8mW

The remaining losses must be the rotational losses

T ⋅ ω = 6.829W

The no-load speed is 3140 rpm (328.8 rad/sec)

The torque is

T =
6.829W

328.8rad/ sec
= 0.02077Nm

This then tells you the friction

T = Dω

D =
T
ω = 63.17E − 6 Nm

rad/sec

Plugging in numbers:

ω = 


Kt

(Js+D)(Las+Ra)+K t
2


Va

ω = 


535,050

s2+648.6s+121,790


Va

The step response of a motor with no load is then

>> G = tf(535050, [1, 648.6, 121790])
 

        535050
----------------------
s^2 + 648.6 s + 121790

The 2% settling time is approximately 4 / the real part of the dominant pole

 
>> Ts = 4 / 324

    0.0123

Plot the step response for a 50V step out to 20ms

>> t = [0:0.001:1]' * 0.02;
>> y = step(G,t);
>> plot(t*1000,y * 50);
>> xlabel('Time (ms)');
>> ylabel('Speed (rad/sec)')
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Step Response of a Pittman 14207 Motor with No Load and a 50V Step Input

Motors and Gears:

One problem with using a motor to drive a robotic arm is that motors are designed to spin whereas robots tend to

remain at a certain spot.  To couple a motor to a robot, a gear is often used.

Gear Reducer:  http://motiontek.ca/gear_reducer.html

Gears reduce the speed of the shaft (or conversely, a slow speed at the output corresponds to a high speed at the

input - which is good since motors want to spin.)  The relationship for a gear is

N1ω1 = N2ω2

or

NDSU Position Control of a Robot with Gears ECE 494

JSG 5 rev June 6, 2016



ω1 = 


N2

N1


ω2

With a 12:1 gear reduction  (N1 = 12, N2 = 1), the output shaft spins 12x slower than the input shaft.

Power has to balance, meaning

T1ω1 = T2ω2

Substituting

T1 = 


N1

N2


T2

With a 12:1 gear reduction, the output shaft has 12x higher torque than the input shaft.  Gears act as torque

amplifiers.

One interesting feature of gears is they reduce the impedance's as seen by the motor.  Using the analogy

V = IR

ω2 = T2Z2

then an impedance at the output of the gear (Z2) looks like




N1

N2


ω1 = 


N2
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T1Z2

ω1 = T1





N2
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


2

Z2



The impedance as seen through a gear increase as the turn-ratio squared.

The robot has an inertia between 0 and 3 kg m2.  Assuming a 300:1 turn ratio along with a gear with the same

parameters, the net inertia seen by the motor is

J total = Jmotor + Jgear +
Jrobot

3002

J total = (47.3 ⋅ 10−6) + (?) + 
0..3

3002


 ;kg ⋅ m2

 47.3 ⋅ 10−6 < Jtotal < 80.63 ⋅ 10−6;kg ⋅ m2

Assume the gear's inertia is 20% of the motor's inertia (a guess) and the robot's inertia is 1.5 kg m2.  Then, the

total inertia is

J total ≈ 73 ⋅ 10−6;kg ⋅ m2

The net dynamics for each motor are then
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θ ≈ 


346,700

s3+648.1s2+78,910s


Va + 

5.78

300s

 Tdist

θ ≈ 


346,700

s(s+485.6)(s+162.5)


Va + 

0.0192
s

 Tdist

Feedback Control of a DC Motor

Assume a unity feedback control law where Ref is the desired angle (as defined by the inverse kinematics from

before):

G(s)K(s)
R E Va Q

plantcompensator

where

G(s) = 


346,700

s(s+485.6)(s+162.5)




A lead compensator for K(s) would speed up the system

K(s) = k
s+162.5

s+1625



resulting in

GK = 


346,700k

s(s+485.6)(s+1625)




Alternatively, a PD feedback control law could be used

R E QVa
G(s)P + Ds

PlantCompensator

PD Control Law of a DC Servo Motor
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resulting in the open-loop system being

GK = 


346,700(P+Ds)

s(s+485.6)(s+1625)




Selecting

(P + Ds) = k(s + 162.5)

results in the root locus following the roots of open-loop system being

s(s + 485.6) + k = 0

with the following root locus plot:

0-100-200-300-400-500
0

j100

j200

j300

s = -242 + j242

k = 0.3379

Root Locus of a DC Servo Motor with (P + Ds) = k ( s + 162 )

To place the closed-loop poles at s = -242 + j242 ( meaning 4% overshoot for a step input or a damping ratio of

0.7 ), 




346,700k

s(s+485.6)




s=−242+j242

= −1

k = 0.3379

so the PD controller is

P + Ds = 0.3379(s + 162.5)

P + Ds = 0.3379s + 54.91
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D = 0.3379

P = 54.91

The step response for the closed-loop system is then the step response of

θ = 


117,128

(s+242+j242)(s+242−j242)


R

To evaluate the effect of the disturbance, evaluate the following

θ ≈ 


346,700

s(s+485.6)(s+162.5)


Va + 

0.0192
s

 Tdist

With

Va = (P + Ds)(R − θ)

at DC (s=0) you get

sθ = 0 = 


346,700

(485.6)(162.5)


 (P)(R − θ) + (0.0192)Tdist

When R = 0, the disturbance effects the angle as

θ = 


0.0192

4.394P

 Tdist

Worst case when the disturbance is 3Nm (arm pointing straight out) and P = 54.91

θ = 79.58 ⋅ 10−6 rad=0.00450

With this PD controller, the disturbance will only offset the angle by 0.0045 degrees (worst case).

With a 300:1 gear reduction, all you need to do is control the angle of the motor.
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Motor Control Case 1:  PD Control

Assume a PD controller of the following form

R E QVa
G(s)P + Ds

PlantCompensator

PD Control with Va = (P + Ds) (R - Q)

where

P + Ds = 0.3379(s + 162.5)

The closed-loop system is then

θ = 


117,128

(s+242+j242)(s+242−j242)


R

which has the following step response:

>> G = zpk([],[-242+j*242,-242-j*242],117128);
>> t = [0:0.001:1]' * 0.04;
>> y = step(G,t);
>> plot(t*1000,y)
>> xlabel('Time (ms)');

 

Note that actual motor angle lags behind the desired angle (R) by 10ms.  Also note that the control law is

Va = (P + Ds)(R − θ)
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meaning that you need to input

The desired angle (R), and

The derivative of the desired angle (sR)

To simulate this type of controller, add dynamics so that the desired motor angle (R as computed from the inverse

dynamics) differs from the acutal motor angle  by the above transfer function.(θ)

PD Control (case 2):

A more common type of PD control does not use the derivative of the desired angle and looks like the following:

G(s)
1

s

D

P
R E Va w Q

PD Control with Va = P*R - (Ds + P) Q

Here, the relationship between  and R isθ

θ = 


346,700P

s(s+485.6)(s+162.5)+346,700(Ds+P)


R

With

P + Ds = 0.3379(s + 162.5)

then

θ = 


117128

(s+242+j242)(s+242−j242)






162.5

s+162.5

R

with the following step response

>> G2 = zpk([],[-242+j*242,-242-j*242, -162.5],117128 * 162.5);
>> y2 = step(G2,t);
>> plot(t*1000,y,'b',t*1000,y2,'r')
>> xlabel('Time (ms)');
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Step Response where you use sR (blue) and do not use sR (red)

Note that

You no longer need to include the derivative of R (good), but

You get a longer delay between the desired angle (R) and the actual angle

PD Control plus Feed Forward Control

Another way to write the dynamics where

Va = PR − (P + Ds)θ

is

θ = 


117128

(s+242+j242)(s+242−j242)






162.5

s+162.5

R

or rewriting it:

θ = 


1

5.2539e−008s3+3.3967e−005s2+0.0103s+1


R

If you add a feedforward term so that

Va = (1)(PR)
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becomes

Va = (1 + 0.0103s)(PR)

then the transfer function becomes

θ = 


0.0103s+1

5.2539e−008s3+3.3967e−005s2+0.0103s+1


R

This is essentially the PD controller from before

If you add a second feedforward term

Va = (1 + 0.0103s + 0.000034s2)(PR)

the transfer function becomes

θ = 


3.3967e−005s2+0.0103s+1

5.2539e−008s3+3.3967e−005s2+0.0103s+1


R

In this case,  you need to know

R

sR

s2R

The block-diagram for the feed-forward controller is

G(s)
1

s

D

P
R E Va w Q

F

Feed Forward

With the resulting step response:

>> P = poly([-242+j*242,-242-j*242,-162.5])

  1.0e+007 *

    0.0000    0.0001    0.0196    1.9033
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>> format short e
>> P1 = P / P(4)

  5.2539e-008  3.3967e-005  1.0286e-002  1.0000e+000

>> G1 = tf(1, P1);
>> y1 = step(G1,t);

>> G2 = tf(P1(3:4), P1);
>> y2 = step(G2,t);

>> G3 = tf(P1(2:4), P1);
>> y3 = step(G3,t);
>> plot(t*1000,[y1,y2,y3])
>> xlabel('Time (ms)');

 

Step Response for a PD controller with the input using R (blue),  R and sR (green),  R, sR, s2R (red)

Note that by inputting the derivative and 2nd derivative of R, the lag between the actual angle  and the(θ)

commanded angle (R) gets smaller and smaller.
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Simulation Results

Write a program to trace a square for a 2-link arm

function [P1, Qnet] = RRMove(P0, P1, T)

function [Q] = InverseRR(TIP)

function RR(Q, TIP)

% TwoLink.m

%

%  Q = motor angles

%  R = desired angles

%  TIP  = path you're trying to follow

>> P0 = [0.2; 0.2];
>> [P1, Q1] = RRMove(P0, [1; 0.2], 2);
>> [P2, Q2] = RRMove(P1, [1; 1], 2);
>> [P3, Q3] = RRMove(P2, [0.2; 1], 2);
>> [P4, Q4] = RRMove(P3, [0.2; 0.2], 2);
>> R = [Q1, Q2, Q3, Q4];
>> 
>> G = zpk([],-10,10);
>> Q0 = R(:,1)

Q0 =

    2.2143
   -2.8578

>> Q = step3(G, t, Q0, R);
>> TwoLink
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Desired Position of the Robot (green) and Actual Position (blue)
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