
Translation Matrices

Lecture #3

ECE 761: Robotics

Class taught at North Dakota State University
Department of Electrical and Computer Engineering

Please visit www.BisonAcademy.com for corresponding lecture notes,
homework sets, and solutions.

Translation Matrices

A transform matrix is a way to

Shift a point by the vector (x, y, z)

Rotate the coordinate frame, and

Zoom in and out with a scaling factor of w.

Since each point is defined by a 4x1 vector, the transformation matrix needs

to be a 4x4 matrix:

a4x1 = T4x4b4x1

T is composed of three parts:

A 3x3 rotation matrix (identity in this example)

A 3x1 translation matrix ([bx, by, bz]T)

A 1x1 scalar (w) defining the zoom in / zoom out factor.

ax

ay

az

. ..

aw

=

1 0 0
.
.. x

0 1 0
.
.. y

0 0 1
.
.. z

.

0 0 0
.
.. w

bx

by

bz

. ..

bw

Example 1: Shift the point [1,2,3] by [x, y, z] Use a scaling factor of 1

b =

1

2

3

1

a =

1 0 0 x

0 1 0 y

0 0 1 z

0 0 0 1

1

2

3

1

=

1 + x

2 + y

3 + z

1

Point b has been shifted by [x,y,z].

X0

Y0

Z0

X1

Y1

Z1

x

y

z

Zoom in with a scaling factor of 2

a =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2

1

2

3

1

=

1

2

3

2

This means if you plot the point (1,2,3), it will be doubled

zoomed in with a factor of 2

Example 3: Project a 3D image of an arrow on the YZ plane.

The arrow has eight points

Arrow

 0. 0. 0. 0. 0. 0. 0. 0.
 - 1. 1. 1. 1.5 0. - 1.5 - 1. - 1.

 0. 0. 1. 1. 2. 1. 1. 0.

 1. 1. 1. 1. 1. 1. 1. 1.

The display routine in Matlab
function Display3D(DATA, T)

To draw this in Matlab
 c = cos(25*pi/180);

 s = sin(25*pi/180);

 Ty = [c,0,s,0;0,1,0,0;-s,0,c,0;0,0,0,1];

 c = cos(-45*pi/180);

 s = sin(-45*pi/180);

 Tz = [c,-s,0,0;s,c,0,0;0,0,1,0;0,0,0,1]

 Tdisp = Ty*Tz;

 Display3D(ARROW,Tdisp);

Plot the arrow as you move closer to it (meaning the scaling factor w changes

from 0.1 to 3.0)

T =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 w

T = eye(4,4);

for i=0:300

 w = i/100;
 T(4,4) = w;

 Display3D(ARROW,T*Tdisp);

 pause(0.01);

 end

This shows the arrow getting bigger as you get closer to it

Arrow with scaling factor (w) equal to { 1.0, 1.5, 2.0 }

Translation:

Shift the data in the X direction

Tx =

1 0 0 x

0 1 0 0

0 0 1 0

0 0 0 1

Shift the data in the Y direction:

Ty =

1 0 0 0

0 1 0 y

0 0 1 0

0 0 0 1

Shift the data in the Z direction

Tz =

1 0 0 0

0 1 0 0

0 0 1 z

0 0 0 1

For example: Translate the arrow in the x, y, and z direction:

T = eye(4,4);

for i=0:100

 T(1,4) = i / 100; % x

 Display3D(T*ARROW,Tdisp);

 pause(100);
 end

Translation in the x, y, and z direction by one unit

Example: Where is the point (1, 2, 3) if you translate it by (4,5,6)?
>> P = [1;2;3;1]

 1

 2

 3

 1

>> T = eye(4);

>> T(1,4) = 4;

>> T(2,4) = 5;

>> T(3,4) = 6;

>> T

 1 0 0 4

 0 1 0 5

 0 0 1 6

 0 0 0 1

>> T*P

 5

 7

 9

 1

Translation Plus Rotation.

What happens if you combine a translation matrix plus a rotation matrix?

Note that matrix multiplication is not commutative: the order makes a difference. For

example, define two matricies:

Tx is a rotation matrix about the X axis by 45 degrees
>> Tx = [1,0,0,0;0,c,-s,0;0,s,c,0;0,0,0,1]

 1.0000 0 0 0

 0 0.7071 0.7071 0
 0 -0.7071 0.7071 0

 0 0 0 1.0000

Tt is a translation matrix of (4, 5, 6)
>> Tt = T

 1 0 0 4

 0 1 0 5

 0 0 1 6

 0 0 0 1

If you translate then rotatio, the net result is:
>> Tx*T

 1.0000 0 0 4.0000

 0 0.7071 0.7071 7.7782

 0 -0.7071 0.7071 0.7071

 0 0 0 1.0000

If you rotate then translate, then

>> T*Tx

 1.0000 0 0 4.0000

 0 0.7071 0.7071 5.0000

 0 -0.7071 0.7071 6.0000

 0 0 0 1.0000

In Matlab, you can see this effect as follows:

Rotate about the X axis while

Translating about the Z axis:

 c = cos(5*pi/180);

 s = sin(5*pi/180);

 Tx = [1,0,0,0;0,c,-s,0;0,s,c,0;0,0,0,1];

 Ty = [c,0,s,0;0,1,0,0;-s,0,c,0;0,0,0,1];
 Tz = [c,-s,0,0;s,c,0,0;0,0,1,0;0,0,0,1];

for i=1:200

 T = Tz ^ i;

 T(1,4) = i/200;

 Display3D(T*ARROW,Tdisp);

 pause(0.01);

 end

The arrow spins about its Z-axis (Tz) while translating along the x-axis

In other words, when you mix a translation and a rotation matrix:

You translate (x, y, z) relative to the original axis, and then

Rotate the object

Homework #3
Translate your shape from homework #2

convince yourself that the translation matrices work

Display the object after a series of translations and rotations

convince yourself that translations and rotations can be done sequentially

