Inverse Kinematics for a Rhino Robot

Lecture #5 ECE 761: Robotics

Class taught at North Dakota State University Department of Electrical and Computer Engineering

Please visit www.BisonAcademy.com for corresponding lecture notes, homework sets, and solutions.

Rhino Robot: Forward Kinamatics

The Rhino Robot is a 4 degree-of-freedom robot used to illustrate programming and control of robot manipulators for classroom settings.

Rhino Robot: http://www.theoldrobots.com/images40/rinoarm4.JPG

Reference Frames

Link i	α_{i-1}	a _{i-1}	d _i	Q _i
	The angle between the Zi-1 and Zi axis (twist)	The distance from Zi-1 to Zi measured along the Xi-1 axis	The distance from Xi-1 to Xi measured along the Zi axis (cm)	The angle between Xi-1 and Xi measured about the Zi axis
1	0 deg	0	d1 = 50	Q1
2	-90 deg	0	0	Q2
3	0 deg	a2 = 50	0	Q3
4	0 deg	a3 = 50	0	Q4
5	-90 deg	0	d5 = 5	Q5

Forward Kinematics:

Change 4 lines of RRR routine:

```
Q = [W(1), W(2), W(3), W(4), W(5)];
alpha = [0, -pi/2, 0, 0, -pi/2];
a = [0, 0, 50, 50, 0];
d = [50, 0, 0, 0, 5];
etc.
```

Calling routine:

```
Rhino([0,0,0,0,0], zeros(4,1))

x 100.0000

y 0.0000

z 45.0000

1.0000
```


Inverse Kinematics: Algebraic Solution:

Given the joint angles, the tip position is known via transformation matricies.

The net result for a Rhino robot is the tip relative to reference frame 0 is:

$$P_0 = T_{01} T_{12} T_{23} T_{34} P_4$$

or

$$P_{0} = \begin{bmatrix} c_{1} - s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & 50 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{2} & -s_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s_{2} & -c_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{3} - s_{3} & 0 & 50 \\ s_{3} & c_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{4} - s_{4} & 0 & 50 \\ s_{4} & c_{4} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

There is some redundancy in the Rhino robot

- Four joint angles
- 3 constraints (x, y, z)

Going to the wrist gives a unique (ish) solution

$$P_{0} = \begin{bmatrix} c_{1} - s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & 50 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{2} & -s_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s_{2} - c_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{3} - s_{3} & 0 & 50 \\ s_{3} & c_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 50 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Multiplying this out...

$$P_{0} = \begin{bmatrix} ((50c_{3} + 50)c_{2} - 50s_{2}s_{3})c_{1} \\ ((50c_{3} + 50)c_{2} - 50s_{2}s_{3})s_{1} \\ -(50c_{3} + 50)s_{2} - 50c_{2}s_{3} + 50 \\ 1 \end{bmatrix}$$

giving 3 equations and 3 unknowns:

$$x = ((50c_3 + 50)c_2 - 50s_2s_3)c_1$$

$$y = ((50c_3 + 50)c_2 - 50s_2s_3)s_1$$

$$z = -(50c_3 + 50)s_2 - 50c_2s_3 + 50$$

These equations are not easy to solve...

Inverse Kinematics: Geometric Solution

The top view of a Rhino Robot tells you Q1:

 $\theta_1 = \arctan\left(\frac{x_{tip}}{y_{tip}}\right)$

Top view of a Rhino robot

Finding Q2 and Q3:

$$r = \sqrt{x_{tip}^2 + y_{tip}^2}$$
$$d = \sqrt{r^2 + (z - 50)^2}$$
$$h = \sqrt{50^2 - \left(\frac{d}{2}\right)^2}$$

$$\theta_a = \arctan\left(\frac{z-50}{r}\right)$$
$$\theta_b = \arctan\left(\frac{h}{d/2}\right)$$
$$\theta_2 = \theta_a + \theta_b$$

$$-\theta_3 = 180^0 - 2 \cdot \arctan\left(\frac{d/2}{h}\right)$$

.

.

This is the program InverseRhino:

- Assumes the wrist is pointing straight down
- $\theta_2 + \theta_3 + \theta_4 = 0$
- *Much* easier solution

TIP = Rhino([0.2, 0.3, 0.4, -0.7, 0], zeros(4, 1))

84.2945 17.0873 -1.9869 1.0000

Q = InverseRhino(TIP)

0.2000 0.3000 0.4000 -0.7000 0