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LaGrangian Formulation of System Dynamics

Robots are inherently nonlinear (lots of sine and cosine terms)

To find the dynamics, we need a tool that can deal with nonlinear terms.

LaGrangian dynamics is one such tool.

Idea:

Identify the states of the system

Specify the energy in the system

Specify how the energy changes

If you know how energy moves through a system, you know its dynamics



Definitions:

KE Kinetic Energy in the system

PE Potential Energy

The partial derivative with respect to 't'
∂

∂t

The full derivative with respect to t.
d

dt

L Lagrangian = KE - PE



Full vs. Partial Derivatives

A full derivative contains partial derivatives
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Think of it as find how fast you are climbing
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Full vs. Partial Derivatives

When taking partial derivatives, treat all other terms as constants

Otherwise you double count them

Example

A = xy2t

B = 3xcos(t)

Find

C =
d

dt

AB

2t3 

Solution:  Uses partial and full derivatives

C =
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
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C = 
B

2t3 

xy

2 
 + 2ABt

3 
 (−3xsin(t)) + 3AB

2t2  (1)



Procedure for LaGrangian Dynamics:  

1)  Define the kinetic and potential energy in the system.

2)  Form the Lagrangian:

L = KE − PE

3)  The input is then

Fi =
d

dt



∂L

∂x
.
i


 −

∂L

∂xi

where Fi is the input to state xi.  Note that 

If xi is a position, Fi is a force.

If xi is an angle, Fi is a torque



Example: Rocket Dynamics

Step 1: Determine the potential and kinetic energy of

the rocket

Potential Energy

PE = mgx

Kinetic Energy:

KE =
1

2
mx
.
2

Step 2: Set up the LaGrangian

L = KE − PE

L =
1

2
mx
.
2 − mgx

x



Step 3: Take the partials

L =
1

2
mx
.
2 − mgx

F =
d

dt



∂L

∂x
.

 − 

∂L

∂x



F =
d

dt
(mx

.
) − (−mg)

Take the full derivative with respect to t

F = mẍ + m
.
x
.

+ mg

Note that if the rocket is loosing mass  you get the term  . If you leave thism
.
x
.

term out, the rocket misses the target.



Example 2: Ball in a parabolic bowl

Find the dynamics when

y =
1

2
x2

Step 1: Define the KW & PE

PE = mgy =
1

2
mgx2

KE =
1

2
mv2 +

1

2
Jθ
.
2

x = rθ

which becomes

KE =
1

2


m +

J

r2



x
.
2 + (xx

.
)
2 


X

Y



The inertia depends upon what type of ball you are using:

point mass with all the mass in the centerJ = 0

solid sphereJ =
2

5
mr2

hollow sphereJ =
2

3
mr2

hollow cylinderJ = mr2

Assume the ball is a solid sphere

KE =
1

2



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2

5
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

 x

.
2 + (xx

.
)2 

KE = 0.7m
1

2 + x2 
 x
.
2



Step 2: Form the LaGrangian

L = KE − PE

L = 0.7m
1

2 + x2 
 x
.
2 −

1

2
mgx2

Step 3:  Take the partials.

F =
d

dt


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.

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
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Take the full derivative

F =
d

dt

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. 
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∂
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
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
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. 

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F = (2.8mxx
.
)x
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
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

 ẍ − 1.4mxx

.
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Simplifying

F = 1.4mxx
.
2 + 1.4m

1 + x2 
 ẍ + mgx

If F = 0

ẍ = −






1.4x

.
2+g x

1.4

1

2+x2 








Matlab Code  (Ball.m)

while(t < 100)

    

   ddx = -( 1.4*dx*dx + 9.8) * x / ( 1.4*(1 + x*x) );

   dx = dx + ddx*dt;

   x = x + dx*dt;

    y = 0.5*x*x;

    x1 = [-2:0.01:2]';

    y1 = 0.5* (x1 .^ 2);

 % draw the ball

    i = [0:0.01:1]' * 2 * pi;

    xb = 0.05*cos(i) + x;

    yb = 0.05*sin(i) + 0.5*x^2 + 0.05 + 0.02*abs(x);

 

 % line through the ball

    q = [0, pi] - x/0.05;

    xb1 = 0.05*cos(q) + x;

    yb1 = 0.05*sin(q) + 0.5*x^2 + 0.05 + 0.02*abs(x);

 

    plot(x1,y1,'b', xb, yb, 'r', xb1, yb1, 'r');

    pause(0.01);

    end



Homework #9:

Determine the dynamics of a ball rolling in a different bowl

Determine the kinetic energy

Determine the potential energy

Form the LaGrangian

Take full and partial derivatives to determine the dynamics

Optional:

Modify the bowl program to simulate the ball rolling freely


