Control of a 2-Link Arm
Lecture #11

ECE 761: Robotics

Class taught at North Dakota State University
Department of Electrical and Computer Engineering

Please visit www.BisonAcademy.com for corresponding lecture notes,
homework sets, and solutions.

Control of a RR Robot

Problem:
« Controlling the tip-position of a 2-link robotic arm.

« Assume it is to trace out a square in 8 seconds:

1 t=4
t=2 | -
X

t=0

2-Link Dynamics

From before, the dynamics of the robotic arm are:

(3+2¢2) (1+¢c2) || Oy |_| T1 |, 2520102 +5,65 . 3c1+c12}
(1+c2) 1 0, T, —5,07 C12

A t=4
t=2 | -
X

To control the angle of each motor, you need to
 Define the desired angle at any given time (the set-point), and

« Determine the torque required to drive the motor to that angle.

First, let's use the previous path-planning routines for the RRR robot to define
the desired

« Tip positions, and

- Joint angles

Path Planning:

First, define the tip positions

disp('Defining Path to Follow');
P1 = [0.5, 07"

P2 = [1.5, 01"';
P3 = [1.5, 11°';
P4 = [0.5, 11°';
P5 = P1;

disp('Calculating tip positions');

% Determine the tip positions
every 10ms

[A,T1l] = MoveTo (P1l,P2,2); 15
[A,T2] = MoveTo (P2,P3,2);
[A, T3] = MoveTo (P3,P4,2); 1+
[A,T4] = MoveTo (P4,P5,2);

TIP = [T1,T2,T3,T4]; 05

05+

Seconds

Next, convert these to joint angles.

function [Q] = InverseRR(TIP)
x = TIP(1);
y = TIP(2);

r sgrt (x*2 + y*2);

Qa = atan2(y, Xx);
Qb = acos(r/2);
Ql = Qa + Qb;

Q2 = —-2*Qb;

Q = [Q1l; Qz2];

end

With this, convert tip positions to joint angles

disp('Calculating joint angles');

% Determie the joint angles every 10ms
Qr = [1;
for i=1l:1length (TIP)

g = InverseRR(TIP(:,1));

Qr = [Qr, gl;

end

Program: Desired Joint Angles vs. Time

Desired Joint Angles vs Time for tracing out a square

PD Control

If you have decoupled systems with inertia, J, and no friction, the dynamics
are
T=Js*0
If you apply a proportional-derivative feedback control law
T=P(O,-06)—DsO
then the dynamics become
PO, =Js*0+ Ds6 + PO

or

0= (Js2+f)s+P) 0

D and P are chosen to place the poles of the closed-loop system.

Assume J =5 (worst case for mass 1). To place the closed-loop poles at
s=—4%j4
you get
Js?+Ds+ P =5(s*+8s+32)
D =40
P =160

Assume J = 1 (worse case for mass 2)
Js?+Ds+P=1(s*+25+2)
D=2
P=2

Applying this feedback control law

for i=1:1length (Qr)

160* (Qr(1,1i) - Q
32*(Qr(2,1) — QO
= [T1; T2];

T1 (1)) + 40*(0 - dQ(1));
T2 2)) + 8*(0 - dQ(2));

T

dQ = TwoLinkDynamics (Q, d4dQ, T);

Q = dQ + ddo * dt;

QO + do*dt;

t + dt;

10 Q Q

ask F_Hﬁhxﬂﬁxﬂhhakx

PD Control with Gravity Compensation

From before
T (4+2¢5) (1+¢3) || 64 2520107 +5,63 3C{+Cqy
= . |- - +g
T2 (T+c2) 1 02 —$20 C12
To compensate for gravity, add a term

T1 3C1-|—C12
— Top —
Eines

Note
« You know the joint angles vs. time (path planning)

« You can pre-calculate the gravity term.

PD Control with Gravity Feedforward Term

T
161

T —
05

.]
0.5 l | |

05 0 0.5 1 1.5

PD Control with Gravity and Coriolis Force

2

1.5F

| N

r___————___________,#/ﬁ

05

! ! !
0.5 o 0.5 1 1.5

Velocity Feedfoward Control:

Once you cancel the gravity and coriolis terms, the dynamics become

0= (Js2+f)s+P) 0

Ideally, the transfer function should be 1 (meaning the angle exactly matches
the desired angle). If you add a derivative term

T=Tpp- Tg + DsO,
you get

0= (M) 0
Js2+Ds+P/) "

which 1s closed to one (meaning better tracking). To do this, you need to

 Take the derivative of the desired angles, and

- Bias the torque by D times this derivative

In Matlab:

% Velocity - right after computing the desired angles
dQrl = Derivative (Qr (1, :));
dQr2 = Derivative (Qr (2, :));

dOor = [dQrl ; dQr2];

for i=1:1length (Qr)

Tl = 160*(Qr(1,1) - Q
T2 = 32*(Qr (2,1) - O
T = [T1; T27;

1)) + 40*(dor(1l,1) - dO(1));
)

(
2)) + 8*(dQr(z,1) - dQ(2));

% plus gravity

T =T - G(:,1);
% plus coriolis
T =T-C(:,1);

PD Control + Gravity + Coriolis + Velocity

Acceleration Feedfoward Control:

Finally, 1f you also bias the torque by the acceleration term:

Ti | | B+2c2) (1+cy) || 64
T, B (1+c¢y) 1 0,

you get a transfer function of
0= (Js2+Ds+P> 0,

Js?+Ds+P
plus gravity
=T - G(:,1);
plus derivative
= T + diag([40, 8]) *dQr(:,1i);
plus coriolis
=T - C(:,1);
% plus acceleration
cZ2 = cos(Q(2));
T =T + [3+2*c2, 1+c2 ; 1+c2, 11*ddQr(:,1);

H o° H oo H o°

0.5

15 0 05 1 15 2

Actual & Dsired Tip Position for PD, Gravity, Coriolis, Derivative, and Inertia Compensation

