
Control of a 2-Link Arm
Lecture #11

ECE 761: Robotics

Class taught at North Dakota State University
Department of Electrical and Computer Engineering

Please visit www.BisonAcademy.com for corresponding lecture notes,
homework sets, and solutions.

Control of a RR Robot

Problem:

Controlling the tip-position of a 2-link robotic arm.

Assume it is to trace out a square in 8 seconds:

0.5m 1.0m 1.5m 2.0m

0.5m

1.0m

t=0

t=2

t=4t=6

t=8

X

RR Robot

Y

1kg

1kg

2-Link Dynamics

From before, the dynamics of the robotic arm are:






(3 + 2c2) (1 + c2)

(1 + c2) 1










θ̈1

θ̈2




 =





T1

T2




 +





2s2θ

.
1θ
.
2 + s2θ

.

2

2

−s2θ
.

1

2






− g




3c1 + c12

c12






0.5m 1.0m 1.5m 2.0m

0.5m

1.0m

t=0

t=2

t=4t=6

t=8

X

RR Robot

Y

1kg

1kg

To control the angle of each motor, you need to

Define the desired angle at any given time (the set-point), and

Determine the torque required to drive the motor to that angle.

First, let's use the previous path-planning routines for the RRR robot to define

the desired

Tip positions, and

Joint angles

Path Planning:

First, define the tip positions

disp('Defining Path to Follow');

P1 = [0.5, 0]';

P2 = [1.5, 0]';

P3 = [1.5, 1]';

P4 = [0.5, 1]';

P5 = P1;

disp('Calculating tip positions');

% Determine the tip positions

every 10ms

[A,T1] = MoveTo(P1,P2,2);

[A,T2] = MoveTo(P2,P3,2);

[A,T3] = MoveTo(P3,P4,2);

[A,T4] = MoveTo(P4,P5,2);

TIP = [T1,T2,T3,T4];

Next, convert these to joint angles.
function [Q] = InverseRR(TIP)

 x = TIP(1);

 y = TIP(2);

 r = sqrt(x^2 + y^2);

 Qa = atan2(y, x);

 Qb = acos(r/2);

 Q1 = Qa + Qb;

 Q2 = -2*Qb;

 Q = [Q1; Q2];

 end

With this, convert tip positions to joint angles

disp('Calculating joint angles');

% Determie the joint angles every 10ms

Qr = [];

for i=1:length(TIP)

 q = InverseRR(TIP(:,i));

 Qr = [Qr, q];

end

Program: Desired Joint Angles vs. Time

Desired Joint Angles vs Time for tracing out a square

PD Control

If you have decoupled systems with inertia, J, and no friction, the dynamics

are

T = Js2θ

If you apply a proportional-derivative feedback control law

T = P(θr − θ) − Dsθ

then the dynamics become

Pθr = Js2θ + Dsθ + Pθ

or

θ = 


P

Js2+Ds+P


 θr

D and P are chosen to place the poles of the closed-loop system.

Assume J = 5 (worst case for mass 1). To place the closed-loop poles at

s = −4 ± j4

you get

Js2 + Ds + P = 5(s
2 + 8s + 32)

D = 40

P = 160

Assume J = 1 (worse case for mass 2)

Js2 + Ds + P = 1(s
2 + 2s + 2)

D = 2

P = 2

Applying this feedback control law
for i=1:length(Qr)

 T1 = 160*(Qr(1,i) - Q(1)) + 40*(0 - dQ(1));

 T2 = 32*(Qr(2,i) - Q(2)) + 8*(0 - dQ(2));

 T = [T1; T2];

 ddQ = TwoLinkDynamics(Q, dQ, T);

 dQ = dQ + ddQ * dt;

 Q = Q + dQ*dt;

 t = t + dt;

PD Control with Gravity Compensation

From before





T1

T2




 =






(4 + 2c2) (1 + c2)

(1 + c2) 1










θ̈1

θ̈2




 −





2s2θ

.
1θ
.
2 + s2θ

.

2

2

−s2θ
.

1

2






+ g




3c1 + c12

c12






To compensate for gravity, add a term





T1

T2




 = TPD − g





3c1 + c12

c12






Note

You know the joint angles vs. time (path planning)

You can pre-calculate the gravity term.

PD Control with Gravity Feedforward Term

PD Control with Gravity and Coriolis Force

Velocity Feedfoward Control:

Once you cancel the gravity and coriolis terms, the dynamics become

θ = 


P

Js2+Ds+P


 θr

Ideally, the transfer function should be 1 (meaning the angle exactly matches

the desired angle). If you add a derivative term

T = TPD − Tg + Dsθr

you get

θ = 


Ds+P

Js2+Ds+P


 θr

which is closed to one (meaning better tracking). To do this, you need to

Take the derivative of the desired angles, and

Bias the torque by D times this derivative

In Matlab:

% Velocity - right after computing the desired angles

dQr1 = Derivative(Qr(1,:));

dQr2 = Derivative(Qr(2,:));

dQr = [dQr1 ; dQr2];

for i=1:length(Qr)

 T1 = 160*(Qr(1,i) - Q(1)) + 40*(dQr(1,i) - dQ(1));

 T2 = 32*(Qr(2,i) - Q(2)) + 8*(dQr(2,i) - dQ(2));

 T = [T1; T2];

 % plus gravity

 T = T - G(:,i);

 % plus coriolis

 T = T - C(:,i);

PD Control + Gravity + Coriolis + Velocity

Acceleration Feedfoward Control:

Finally, if you also bias the torque by the acceleration term:





T1

T2




 =






(3 + 2c2) (1 + c2)

(1 + c2) 1










θ̈1

θ̈2






you get a transfer function of

θ = 


Js2+Ds+P

Js2+Ds+P


 θr

 % plus gravity

 T = T - G(:,i);

 % plus derivative

 T = T + diag([40, 8]) *dQr(:,i);

 % plus coriolis

 T = T - C(:,i);

 % plus acceleration

 c2 = cos(Q(2));

 T = T + [3+2*c2, 1+c2 ; 1+c2, 1]*ddQr(:,i);

Actual & Dsired Tip Position for PD, Gravity, Coriolis, Derivative, and Inertia Compensation

